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THE DEVELOPMENT OF A NEW RESEARCH PARADIGM FOR STUDYING 
APTITUDE-TREATMENT INTERACTIONS 

EXECUTIVE SUMMARY 

Requirement: 

The purpose of this project was to develop a new research method for studying aptitude- 
treatment interactions (ATIs). Our approach was to adapt to training evaluation research the 
personnel classification paradigm used in employment testing. We present in the Introduction of 
this report detailed descriptions of personnel classification theory, method, and research findings, 
and a review of the training literature. We describe in the Method the classification-ATI research 
paradigm we designed. 

Procedure: 

Our approach consisted of three phases. First, we conducted a review of the training 
literature to identify characteristics of training settings that showed potential for forming ATIs 
with learner characteristics. Our review, which spanned the literature of technical training, 
industrial and organizational psychology, educational psychology, and instructional design, is 
presented in the Introduction of this report. 

Second, we used the training variables we identified to construct a Training 
Characteristics Survey (TCS) that quantifies variation in specific training characteristics across 
instructional settings.   The TCS is designed to provide course-specific data that is used to 
compute prediction equations for a set of courses under investigation. Thus, it forms an integral 
component of the classification-ATI research method. 

Third, we adapted the differential classification paradigm to ATI research by modifying 
the Johnson and Zeidner (1994) person-job matching simulation method. The classification-ATI 
design employs the cross-validation procedure recommended by Johnson and Zeidner, and a 
person-treatment matching process, which is implemented by linear programming software. In 
the event that sample sizes are small, we discuss the pros and cons of using Monte Carlo 
synthetic data generation techniques to increase sample size to support the cross-validation 
procedure. 

The major modifications we made to the personnel classification method were the 
addition of multilevel regression and the TCS, which are used in combination to compute course- 
specific prediction equations. Multilevel regression is ideal for classification and ATI research 
because it uses treatment-specific variables to model variation in differential prediction 
equations, includes statistical tests of ATI terms, and can accommodate small samples with 
minimal instability to predictor weights. 



The classification paradigm is well suited to ATI research, because it is based on a 
psychometric theorem that provides a novel way to conceptualize ATIs, and provides a 
quantitative measure of the practical impact of ATIs on training performance. Further, the 
classification-ATI research method can be expanded to estimate the dollar benefits to training 
budgets of student-course matching strategies that capitalize on ATIs. 

Findings: 

Since this was a methodological study to develop the classification-ATI research 
paradigm, we did not conduct analyses. However, the method is described in detail for 
immediate application in training evaluation research. The TCS is presented in the Appendix. 

Utilization of Findings: 

We conceived of this report as the basis for designing and conducting ATI research that 
employs a person-treatment matching procedure. The method also is appropriate for other types 
of training evaluation studies that involve comparative analyses of courses, because it provides a 
well-researched and psychometrically sound basis for quantifying training outcomes. The TCS 
was designed to measure the variation in specific variables common to most training settings. It 
can be used for a variety of purposes other than ATI research, such as revising or evaluating 
training courses. 

VI 
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THE DEVELOPMENT OF A NEW RESEARCH PARADIGM FOR STUDYING 
APTITUDE-TREATMENT INTERACTIONS 

Chapter 1: Introduction 

Definition of Aptitude-Treatment Interaction 

One of the most important questions in designing and evaluating training is the effect of 
aptitude treatment interactions (ATIs) on performance (Cronbach & Snow, 1977; Goldstein, 
1993). The study of ATIs examines the relationships between characteristics of the learner and 
the training environment. The ATI hypothesis states that no single learning environment is best 
for all students, but that individual differences in aptitudes, motivation, and other variables (e.g., 
learning styles), interact with siruational variables associated with different learning settings to 
enhance or diminish training performance (Cronbach & Snow, 1977). An ATI is present when 
the slope of the regression line predicting the outcome measure for Treatment A differs 
statistically from that of Treatment B, using the same predictor information. 

Cronbach and Snow (1977) defined aptitude in the context of ATI as "any characteristic 
of a person that forecasts his probability of success under a given treatment" (p. 6). This 
definition makes clear that Cronbach and Snow do not restrict the concept of aptitude in learning 
situations solely to cognitive abilities, and that a more appropriate term may be person-treatment 
interaction, because it encompasses all individual difference variables related to learning. 
Treatment has been defined as "any instructional strategy or combination of instructional 
strategies that structures information for the purpose of having students learn that information" 
(Parkhust, 1975, p. 42, cited in Thompson, Simonson, & Hargrave, 1992). 

Savage, Williges, and Williges (1982) recognized that there is a fundamental problem in 
understanding and measuring ATIs, because training evaluation usually focuses on group mean 
performance in a single course (i.e., treatment) or set of courses, rather than on the differential 
performance of individuals in alternative courses or training environments. They stated that: 

Skill training is usually an individual rather than a group experience, 
[however,] research to evaluate training procedures usually employs group 
statistics in which a fixed population of students is assumed and the training 
alternative producing the highest mean performance is sought. Unfortunately, 
in many cases the training approach selected does not provide optimal training 
for each of the individual students (p. 417, [italics added]). 

The purpose of this report is to present a new paradigm for studying ATIs. The research 
method we describe is a modification of the differential classification research paradigm, which 
we transported from the personnel testing literature and adapted to training settings. Differential 
personnel classification refers to the assessment of job applicants for many different jobs or 
occupations at the same level within an organization, and the matching of each person to the job 
for which he or she is predicted to be most successful. The term differential personnel 



classification has been used by the military services for many years to refer to their recruit-job- 
assignment procedure. However, a more general term for this process is person-job (or 
occupation) matching. 

Organization of the Report 

This report is divided into two sections, Introduction and Method. Our objective in the 
Introduction is to establish a firm foundation for the adaptation of the classification paradigm to 
training evaluation. We begin the Introduction with a discussion of the similarities in the 
concepts of ATI in training and person-job matching in employment testing. We follow this with 
descriptions of differential classification theory, methodology and research findings. We 
conclude the Introduction with a review of the training literature that we conducted as the basis 
for designing the Training Characteristics Survey (TCS). The TCS is an instrument we propose 
be used in ATI research to identify and measure specific training variables that may interact with 
learner characteristics. We believe that the TCS will improve ATI research by providing insight 
into those aspects of learning environments that do and do not interact with student 
characteristics. 

The Method presents a complete description of the classification-ATI research paradigm 
we developed in the project as the foundation of this report. Our objective is to show that the 
personnel classification paradigm, as we have adapted it for training evaluation research, 
provides a more sensitive, accurate and informative basis for detecting and explaining ATIs than 
the traditional ATI research method of comparing simple regression equations across multiple 
treatments. We begin the Method Chapter with descriptions of the TCS development process 
and multilevel regression (MLR). These are followed by suggestions for a course sampling 
procedure, criterion variables, and predictors. The final section of the Method Chapter is a 
detailed explanation of the student-course matching simulation procedure, which forms the basis 
of the classification-ATI paradigm. 

A TIs and Differential Personnel Classification 

It is interesting to note that the distinction between group mean performance within 
treatment and differential individual performance across treatments raised by Savage, Williges, 
and Williges (1982) is also found in the person-job matching context (Statman, 1992, 1993). 
Typically, employment testing relies on a simple selection model for predicting performance in a 
single job or set of jobs. The selection model uses "group statistics" (i.e., multiple regression 
and correlation) to rank and choose candidates from the top down for a job. However, Brogden 
(1951) and Horst (1954) observed that most organizations would be better served by assessing 
applicants for multiple jobs and optimizing the match of each individual's pattern of abilities and 
interests to the occupation with the most congruent pattern of qualifications. 

This optimal person-job matching (OPJM) model of employment testing suggested by 
Brogden (1959) and Horst (1954) is based upon differential classification theory, which 



addresses the measurement of both intra-individual and inter-individual differences in 
performance in multiple occupations (Johnson & Zeidner, 1991). The measurement of intra- 
individual differences is accomplished by predicting each job candidate's success in a variety of 
occupations. Inter-individual differences are measured by rank-ordering all members of the 
applicant pool according to their potential success within each occupation. Practical applications 
of OPJM models (e.g., the military Services' recruit assignment systems) are implemented by an 
optimization algorithm that places each applicant in his or her best-fitting occupation, subject to 
practical constraints like adequate vacancies. 

Cronbach, Snow and others (e.g., Cronbach & Gleser, 1965; Cronbach & Snow 1977; 
Snow & Lohman, 1984; Ward, 1983) recognized that personnel classification, or OPJM, in the 
employment testing context is analogous to the problem of matching students to appropriate 
training settings. Personnel classification is based on the premise that there is an interaction 
between worker characteristics (e.g., aptitudes, interests, motivation) and job characteristics (e.g., 
technical content, working conditions), making personnel classification a particular type of 
person-treatment interaction in which the treatment is occupation (Cronbach & Gleser, 1965; 
Cronbach & Snow, 1977; Ward, 1983). Both person-job and student-course matching processes 
attempt to capitalize on the interactions between individual characteristics and differential 
treatments. However, personnel classification researchers have focused heavily on optimizing 
the matching process to obtain gains in performance. In contrast, ATI researchers mainly have 
focused on trying to identify ATIs in different learning settings with a large number of measures 
of learner characteristics. (See Maldegen, Statman, Gribben, and Yadrick [1996] for a recent 
review of ATI research.) 

In this report we propose that the personnel classification paradigm be used to study ATIs 
in learning settings. Our rationale was drawn from the observations described in the paragraph 
above that the classification proposition, which holds that worker and occupational 
characteristics interact, is equivalent to the ATI hypothesis. As we stated above, this hypothesis 
is that some contextual factors (e.g., method of instruction or difficulty of the material) 
differentially impact a student's learning-related characteristics to produce varying levels of 
success in different instructional settings. In other words, if every person were to perform 
equally well in every occupational or learning setting, then no person-treatment interactions 
would be present. If, however, some people tend to do better in some environments and worse in 
others, then some type of person-treatment interaction is responsible for this intra-individual 
variation in performance across settings. 

Overview of the Personnel Classification Paradigm 

The classification paradigm is a method for evaluating the benefits from optimally 
matching people to jobs. It produces a measure that compares optimally assigning people to one 
of several occupations with random assignment using no personnel or job information. 
Classification theory and methodology were developed through a continuously evolving process 
over a 50-year period beginning shortly after World War II. A number of researchers (Alley & 
Darby, 1995; Brogden, 1946,1951,1954,1955,1959,1964; Horst, 1954,1956; Hunter & 



Schmidt, 1982; Johnson & Zeidner, 1991,1994; Lord, 1952; Schoenfeldt, 1982; Thomdike, 
1950) worked on different aspects of the problem, namely: 

• the psychometric model of classification efficiency 
• requirements of assessment instruments specifically designed for OPJM 
• sampling and statistical considerations associated with measuring the 

benefits of OPJM 
• development of assignment algorithms for fitting people to jobs 
• research methods for measuring results 

We provide an overview of personnel classification theory in the following section and a 
detailed description of the classification research paradigm in the Method Chapter. 

The Benefits of Using the Personnel Classification Paradigm to Study ATIs 

We believe that transporting the personnel classification paradigm to training will create 
important advances in ATI research for three reasons. First, the paradigm is based on a 
psychometric theorem developed by Hubert Brogden (1959) that delineates the mathematical 
basis for optimally matching people with treatments. Since Brogden's classification theorem is a 
general formula for characterizing any person-treatment interaction involving individual 
assessment measures and performance criteria for multiple treatments, we believe it will be as 
useful for measuring and interpreting ATI research findings as it is for person-job matching 
results. 

Second, the classification paradigm is well-researched. It has been used to study 
empirical person-job matching questions since the 1960s (Zeidner & Johnson, 1994). More 
importantly, it provides a systematic approach for quantifying the practical effects of ATIs on 
student training performance. We have coined the term mean predicted training performance 
(MPTP) for the measure of person-treatment interaction in training settings. (The measure of 
benefit in the person-job matching context is referred to as mean predicted [job] performance 
[MPP]). MPTP is an estimate of the average training performance (across multiple course 
settings) produced by some method of placing students in training environments. Optimal 
assignment is the process of matching students to the settings that best match their aptitudes and 
learning strategies. The MPTP obtained from optimal matching should be compared to the 
MPTP obtained from other types of assignment processes (e.g., random or actual class 
assignments) to evaluate the potential practical improvements of optimal person-treatment 
matching compared to the other strategies. 

Recent classification research has led to the development of a cross-validation procedure 
that has improved the accuracy of OPJM estimates and added a utility analysis capability that 
provides the opportunity to link performance benefits to dollar estimates of human resource costs 
(Nord & Schmitz, 1991). Both of these procedures can be transported to ATI research. We 
include cross-validation within the method we propose in this report. Further research will be 
needed to apply the OPJM utility analysis methods to training evaluation. The capability to 



employ utility analysis to evaluate alternative technical course designs in terms of training 
dollars would be a major benefit to the Air Force. 

Third, we believe that our adaptation of the personnel classification paradigm for ATI 
research will improve the detection of ATIs, if they are present. Moreover, we expect that the 
classification-ATI paradigm will provide a means for illuminating the causes of conflicting 
results that historically have been obtained with the traditional ATI research design. We 
modified the personnel classification method to produce a highly sensitive measure of ATIs 
using a twofold approach. 

One, we designed an instrument we call the TCS, which measures specific learning 
context variables that we hypothesize will account for ATIs in alternative technical training 
settings. Two, we propose that multilevel regression (MLR) be employed to quantify and test the 
statistical significance of specific ATIs involving variables identified by the TCS. MLR requires 
the explicit formulation of interaction terms, and provides tests of their significance. 
Consequently, our method will identify which hypothesized ATIs are statistically significant and 
which are nonsignificant in predicting training performance. The TCS and MLR are described in 
detail in the Method Chapter of this document. 

In conclusion, the direct parallel between the person-job interaction of classification and 
the aptitude-treatment interaction of training offers the opportunity to transport the classification 
paradigm, with modifications, to training evaluation research. Adapting a classification approach 
to the study of ATIs will move this area of research beyond the simple comparison of prediction 
functions across instructional methods. We believe that the classification-ATI paradigm can 
produce major advances in ATI research because it will improve the sensitivity with which ATIs 
are detected, if they are present, and shed new light on the exact nature of any ATIs detected. 

A final advantage of the classification-ATI paradigm is that it will enable researchers to 
quantify the potential benefits of capitalizing on ATIs by simulating the optimal matching of 
students to training treatments. We anticipate that this quantification of the practical effects of 
ATIs will provide a basis for improving the effectiveness of training design. Snow and Lohman 
(1984) described the importance of ATI research to training evaluation as follows: 

Educational treatment comparisons, including program evaluations, must at least 
incorporate tests of plausible ATI hypotheses in order to interpret their intended main 
effect conclusions properly. Any treatment environment can serve some learners well 
and others poorly. Research on treatment design should thus always use what is known 
about individual differences to determine for whom any particular instructional method is 
appropriate and for whom it is not appropriate (pp. 358-359). 

Personnel Classification Theory and Research 

Personnel classification theory formally states the propositions underpinning OPJM and 
provides the backdrop for the methodology we propose in this report. The major premises are 



that the nature of performance differs across occupations and that these differences interact with 
a worker's job-related characteristics to produce a range from low to high success in different 
occupations. Specifically, the theory holds that different occupations require different 
combinations of cognitive aptitudes, psychomotor abilities, personality characteristics, interests 
and other job-related variables (e.g., job knowledge). In turn, people vary in their patterns of 
these variables. Consequently, a person's success in a given occupation will depend upon the 
strength of the interaction (or match) of his or her profile on these variables with the occupational 
requirements for on-the-job performance (Statman, 1993). 

As mentioned earlier, the significance of capitalizing on the interaction between 
individual aptitudes and interests and the differential performance requirements of occupations 
was recognized by Brogden (1946,1951,1954,1955,1959,1964), Thorndike (1950), Horst 
(1954, 1956) and others (e.g., Lord, 1952) during and immediately after World War II. Brogden 
(1959) and Horst (1954) recognized that large organizations often face complex decisions in 
which personnel can be considered simultaneously for multiple treatments (e.g., career paths, 
jobs, training, and development opportunities). However, the person-job matching problem is 
usually simplified from a classification decision to a simple select/reject decision for a single 
treatment. 

Brogden (1946, 1951,1954, 1955,1959) developed a mathematical model of differential 
classification between 1946 and 1959. This model, in greatly simplified form, became the basis 
for the Military Services' operational classification systems. However, little empirical research 
was conducted on Brogden's theorem after the 1960s. Researchers agree that this was due in 
large part to the complexity of the psychometric classification model and the person-job 
matching procedures that underlie classification decision-making processes (Hunter & Schmidt, 
1982; Johnson & Zeidner, 1991; Zedeck & Cascio, 1984). 

Recent advances in linear programming (LP) technology and in personal computer 
capacity led Johnson and Zeidner to revive the seminal work of Brogden (1959) and Horst 
(1954) in 1991. They proposed the first formally stated theory of classification efficiency called 
differential assignment theory {DAT). In addition, they refined the research paradigm for 
studying classification efficiency through computer-based simulation of the person-job matching 
process, which had been developed in the 1960s. 

We describe Brogden's classification theorem and DAT, and briefly review recent 
research in the next two sections of this chapter. 

Brogden's Classification Model 

Brogden (1959) proved algebraically that the gain in job performance from optimal 
matching of people to jobs compared to random assignment is a function of three variables: 
a) the predictive validity coefficients of the prediction equations for every job in the problem, 
b) a negative function of the intercorrelations of the equations, which is a measure of differential 
prediction efficiency, and c) the number of jobs (i.e., treatments) to which people are matched. 
His proof is based on several assumptions, including that the matching process is optimal (i.e., 



each person is assigned to the job for which he or she has the highest predicted performance 
score). 

Brogden's (1959) measure of classification efficiency is the following: 

MPP = R(l-r)mZm. 
where: 

MPP   = the mean predicted performance standard score of a group of 
applicants optimally assigned to m jobs, 

R = the average predictive validity of ordinary least squares (OLS) 
estimates for all jobs, 

r = the average intercorrelation of the OLS estimates, and 
Zm      = the mean criterion standard score of the group after assignment to 

m jobs with equal vacancies (called quotas). 

This equation is fundamental to classification. It shows that classification efficiency is 
positively related to the predictive validity coefficients of the prediction equations for a set of 
jobs, and negatively related to the intercorrelations of the equations according to the function 
(1 - r)m. This term, (1 - r)1/2, is a measure of the effect of differential prediction across jobs on 
average job performance. Stated differently, it is a measure of the effect of person-treatment 
interactions on average performance across a range of occupations.   Brogden' s (1959) 
classification theorem is useful in constructing maximally efficient OPJM systems, because it 
instructs the researcher to maximize the predictive validities of the performance prediction 
equations, and to minimize their intercorrelations. 

Although Brogden developed his classification theorem to estimate the benefits of OPJM 
systems, it applies to all person-treatment interaction situations in which one or more measures 
of individual characteristics are used to predict success in two or more treatments. Therefore, 
this theorem applies equally well to the study of ATIs in training. Further, the research paradigm 
that evolved from Brogden's theorem, which uses computer simulation to measure the benefits of 
OPJM, applies equally well to measuring the practical effects of capitalizing on ATIs to 
optimally match students to the best-fitting learning environment. As we discuss in the Method 
Chapter, we modified the classification paradigm for training settings to provide specific 
information on the nature and strength of hypothesized ATIs. 

The most important term in Brogden's theorem is (1 - r)m, the differential prediction 
function, because it measures the effect of person-treatment interactions on average performance 
when people are optimally matched to treatments. Understanding the differential prediction 
function allows the researcher to manipulate systematically the content of the assessment battery 
or the type of criterion variable in their investigation of ATIs. 

The differential prediction term shows that (holding all else constant [e.g., the predictive 
validity of the equations and the matching process]) the strongest person-treatment effect is 
obtained when r = 0.00. In this case, the prediction equations are independent, meaning that a 



completely different set of aptitudes, interests, etc., are required to perform successfully in each 
treatment. Conversely, there is no person-treatment interaction when the predictor composites 
completely overlap, producing r = 1.00. In this case, no benefit is achieved from OPJM, because 
a single set of measures predicts equally well for all treatments. This means that each individual 
performs equally well in all treatments. 

Close examination of the differential prediction efficiency function highlights the 
interesting relationship between r and (1 - r)m, and is useful in getting a rough estimate of the 
potential benefits from OPJM derived from different strengths of person-treatment interactions. 
As the average intercorrelation among the prediction equations increases in increments of .10 
from r - 0.00 to r = .99, the loss in differential prediction efficiency occurs at a significantly 
slower rate than the pace at which the average intercorrelation increases. 

Table 1 shows this effect. As stated above, when r - 0.00, the person-treatment 
interaction effect is at its strongest. When r = .10, the differential prediction effect is only 
reduced by 5%. When r increases to r - .50, the interaction effect is only reduced by 29% to .71. 
At the extreme point where the average intercorrelation of the prediction equations for a set of 
treatments is very high (e.g., r = .99) we still obtain a 10% person-treatment interaction effect. 

Table 1. Comparison of r with (1 - r)1/2 

r = 0.00 (i-/-;1/2=i.oo 
r= .10 (\-r)m= .95 
r= .20 (l-rj1/2= .89 
r= .30 (l-r//2= .84 
r= .40 {\-r)m= .75 
r= .50 (l-r)m = .71 
r= .60 (l_r;i/2 =  63 

r= .70 (1 - r)m = .56 
r= .80 (\-r)m = .45 
r= .90 (\-r)m = .32 
r= .99 (l_r;i/2 =   10 

Inspection of Table 1 demonstrates that an OPJM algorithm that assigns each person to 
the treatment for which he or she has the highest predicted performance score will capitalize on 
even small person-treatment interaction effects in the assignment process. Consequently, the 
OPJM process will result in a gain in average performance compared to random assignment even 
when only minor ATIs are present (e.g., when r = .90). Of course, the construction of any set of 
differential prediction equations must be based on large enough samples to insure that the 
differences in the predictor weights across equations are stable and valid. 

The last term in Brogden's classification theorem, Zm , is a measure of the effect of the 
number of treatments to which people are assigned. Zm is an estimate of the mean actual 
performance of a group of applicants after assignment to m treatments (holding all else constant). 



Brogden (1959) used an order statistic for Zm to estimate the effect of the number of treatments 
without conducting a person-treatment matching simulation study. He showed that the gain from 
OPJM increases as the number of treatments increases. The effect of the number of treatments is 
independent of both the predictive validities and the intercorrelations of the differential 
prediction equations in Brogden's classification theorem.1 

Brogden (1959) also showed that performance gains increase according to a decelerating 
function as the number of treatments (e.g., jobs or courses) is increased. However, valuable 
improvements in average performance can be obtained with only a few treatments depending 
upon the purpose of the person-treatment matching procedure and the strength of the ATIs. In 
fact, the decelerating function means that the largest percentage increases in performance are 
achieved with a small number of treatments. 

The number of treatments is an important factor in designing an ATI study that employs 
the classification-ATI paradigm. We do not believe that it is necessary to have a large number of 
alternative settings for the classification-ATI paradigm to be useful in measuring ATIs in 
technical training and other learning settings. Although the aggregate benefit from assessing 
students for 10 or more learning environments would be greater than for 2, the decelerating 
function always reduces the marginal improvement in adding another treatment. It is up to the 
organization to evaluate whether having 2 or 3 alternative training settings (e.g., classroom, 
computer-based training [CBT], and distance learning) would be of practical value. This will 
depend upon a number of factors, the expense of recruiting personnel, the cost of training, the 
amount and cost of attrition or washback, and the consequences of poor training, to name a few. 

The following is a brief overview of Johnson and Zeidner's (1991) classification theory, 
DAT, followed by a review of major recent research. 

Differential Assignment Theory 

Zeidner & Johnson (1994) and Johnson & Zeidner (1991) formulated a theory of 
classification efficiency called Differential Assignment Theory (DAT), which is largely based 
on Brogden's (1959) theorem for quantifying the benefits of OPJM, and on an index of 
differential prediction efficiency developed by Horst (1954). DAT describes the psychometric 
basis for using assessment batteries to optimally match people to jobs. We outline the basic 
tenets below because they may be useful in developing a theory of ATIs in learning. Further, 
Zeidner and Johnson's (1994) guidelines for creating OPJM procedures should be considered 
when designing ATI research and developing training applications that capitalize on ATIs 
operationally. 

The basic propositions of DAT are that success in different occupations requires different 
sets of skills, abilities, interests, and other job-related variables (e.g., conscientiousness) and that 

' This relationship does not hold in practice, although increasing the number of treatments has been found to have a 
relatively small effect on the other two variables (i.e., R and r) (Statman, 1993). 



people vary in their profiles of these variables (Johnson & Zeidner, 1991; Zeidner & Johnson, 
1994; Zeidner, Johnson, & Scholars, 1997). Thus, the theory holds that employing an OPJM 
strategy, which capitalizes on the stable variation in cognitive and non-cognitive predictors of 
performance, will improve average performance across all jobs, when compared to a simple 
selection strategy in which individuals are assessed for only a single occupational category. 

Zeidner and Johnson (1994) developed a set of guidelines for designing OPJM 
procedures (Johnson & Zeidner, 1991). Three of the most important principles are the following: 

(1) A classification battery must be multi-dimensional; i.e., it should measure a range of 
individual characteristics. 

(2) Given adequate sample sizes, the highest level of classification efficiency will be 
obtained by computing OLS equations separately for each target job. This procedure 
maximizes classification efficiency because the OLS estimates have high (shrunken) 
predictive validity coefficients and low intercorrelations. Thus, Brogden's 
classification function (R(l - r)m) is maximized. 

(3) Third, increasing the number of occupations (i.e., treatments) for which individuals 
are assessed will increase the benefits gained from OPJM at a decelerating rate, 
holding all else constant. 

Summary of Recent Classification Research 

The classification work of Johnson, Zeidner, and colleagues described below was directed 
toward validating Brogden's 1959 index of classification efficiency and identifying a set of 
principles to guide the development of OPJM batteries, treatment-specific prediction equations, 
and occupational groupings. The results support the validity of Brogden's classification 
measurement model, upon which our proposed classification-ATI paradigm is based. Further, 
most of the studies cited used a variant of the classification research design we propose in this 
report. The most important findings from these studies are the following: 

(1) The relationships of R, r, and m to classification efficiency contained in Brogden's 
equation held up empirically (Johnson, Zeidner, & Leaman, 1992; Statman, 1993). 

(2) Increasing the dimensionality of a mainly cognitive predictor battery (i.e., Armed 
Services Vocational Aptitude Battery [ASVAB]) by adding perceptual and 
psychomotor tests, a job-related personality measure, and an interest inventory 
produced a large increase in classification efficiency, although the improvement in 
predictive validity was modest (Statman, 1993). 

(3) Multidimensional OLS prediction equations, which were computed for each job from 
a single battery, produced gains in average performance over both a general ability 
measure (weighted by predictive validity across jobs) and unit-weighted specific 
aptitude composites (Darby, Skinner & Alley, 1995; Johnson, Zeidner, & Leaman, 
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1992; Nord & Schmitz, 1991; Nord & White, 1988; Statman, 1993; Wetzel, 1990). 
As in (2) above, Statman (1993) obtained this finding despite that the average 
predictive validity of the OLS composites was not much greater than the validity 
coefficients of the other equations. 

(4) Increasing the number of treatments to which assignments are made has a strong 
positive effect on classification efficiency that is independent of average predictive 
validity or differential prediction efficiency (Scholarios, Johnson, & Zeidner, 1994; 
Statman, 1993). 

(5) The cross-validated estimates of average performance across treatments obtained in 
these studies, when compared to random assignment, showed gains ranging from 
about .10 to .50 standard deviation units. 

Several other classification studies have been conducted using Air Force and Navy data. 
Alley and Teachout (1992) found that separate OLS equations of the 10 ASVAB tests predicting 
hands-on criterion measures resulted in an improvement in average performance over random 
assignment for eight Air Force jobs. Darby et al. (1995) obtained similar results with a criterion 
of final technical school grade in a larger study that included all Air force jobs. Siem and Alley 
(1997) found that an OPJM strategy, compared to random assignment, improved the predicted 
performance of Air Force pilots assigned to four different types of aircraft. Schmidt, Hunter, and 
Dunn (1987) conducted a study for the Navy in which they grouped ratings into three general job 
families. They found that a two-variable composite of general cognitive ability (g) and 
psychomotor ability produced greater classification efficiency than g alone. 

Recently, Alley and Darby (1995) have used simulation techniques to expand Brogden's 
(1959) table of performance gains for alternative classification strategies from 10 to 500 jobs. In 
addition, they found and corrected a mistake in his theorem that improves the accuracy of the 
estimates. Alley, Darby, and Cheng (1996) expanded the Taylor-Russell tables to estimate the 
proportion of successful employees obtained through optimal selection and classification in the 
multiple job context as a function of base rate of success, selection ratio, predictive validity and 
number of jobs. 

Sager, Peterson, Oppler, and Rosse (1997) compared indices of selection efficiency, 
classification efficiency, and differences in subgroup means for all possible combinations of 
ASVAB tests and the experimental predictors included in the Enhanced Computer Administrated 
Test (EC AT) battery (Wolfe, 1997). They found that no one battery of tests simultaneously 
optimized all indices. Consequently, they concluded that when determining the content of an 
assessment battery, researchers must consider the purpose (i.e., selection, OPJM, or to increase 
minority or gender representation in an organization or occupation) for which it will be used. 
Further, researchers must be prepared to make tradeoffs among the alternative types of outcomes 
they desire when designing the battery. 

The potential practical utility of selection and classification strategies, measured in 
dollars instead of performance, has received modest attention. Nord and White (1988) and Nord 
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and Schmitz (1991) developed several approaches to classification utility analysis and found 
significant savings associated with increments in mean performance due to OPJM. Harris, 
McCloy, Dempsey, DiFazio, and Hogan (1993) developed a Cost-Performance Tradeoff Model 
(CPTM) based on an OPJM simulation that provided dollar estimates of utility. The CPTM 
approach employed a cost-effectiveness index of classification efficiency with a number of 
operational constraints built into the OPJM process. The objective of the model was to minimize 
recruiting, training, and compensation costs through an OPJM strategy that met minimum 
performance standards in all jobs. Harris et al. found that increasing the number of dimensions 
in a test battery minimized costs. Further, different combinations of tests affected the recruiting 
and training/compensation costs in different ways. Statman, Harris, McCloy, and Hogan (1994) 
compared the Harris et al. cost-effectiveness OPJM strategy to the Brogden-Johnson-Zeidner 
approach of maximizing average performance and obtained generally the same results using both 
models. 

In summary, differential classification theory has a sound psychometric basis in 
Brogden's (1959) classification theorem and has received a good deal of research in recent years 
due to improvements in LP and personal computer technology. The refinements in the research 
method developed by Johnson and Zeidner (1991) have produced a strong body of results that 
support the existence of ATIs in the person-job matching domain. Further, the classification 
research paradigm effectively captures the practical effects of job-related ATIs in terms of both 
performance and personnel costs. 

The final section of the Introduction presents an overview of the ATI literature and a 
review of training research. We emphasized the training literature in this project because we felt 
it was critically important to use current research findings to guide our development of the TCS. 

Brief Overview of ATI Research 

The research findings on ATIs are quite mixed. Numerous studies have found that 
aspects of the training environment interact with learner characteristics to influence training 
performance outcomes, e.g., the instructional method (Cronbach & Snow, 1977), teaching 
strategies (Snow & Lohman, 1984), and course content (Mumford, Weeks, Harding, & 
Fleishman, 1988). However, large numbers of studies have found no statistically significant ATI 
effects (Maldegen et al., 1996). These apparently conflicting results make interpretation of the 
ATI literature difficult, especially because most studies relied on small samples and investigated 
unique treatment variables. Further, Maldegen et al. (1996) found very little replication of 
research. 

Although an extensive review of the ATI literature was beyond the scope of the current 
project, we noted in our limited review process that the research as a whole lacked carefully 
designed methods and controls (Maldegen et al., 1996). Some of the studies that reported little 
evidence for ATI effects involved ATI analyses that were not planned; consequently, the study 
designs did not include control conditions or variables consistent with sound research design 
(Goldstein, 1993). 
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Campbell (1988) observed that we have only "scratched the surface" of ATI research. He 
suggested that our understanding of both individual differences and the relevant features of the 
training environment should have more elaboration. In the domain of learner characteristics, he 
stated that we must clarify the independent effects of cognitive abilities and prior achievement or 
experience on training performance, and the interactions of these variables with training content. 
In the domain of the training environment, Campbell stated that complexity of instructional 
method (which interacts with general ability) is confounded with training content. In other 
words, highly complex and unstructured training programs tend to reflect highly difficult 
content; while structured, less complex courses contain less difficult material. The implication of 
this observation for the study of ATIs is that analysis of the training environment should include 
independent measurement of instructional method and course content. As we describe below, 
we developed the TCS as an instrument to measure each of these training variables separately.. 

We believe that better designed research is needed to identify the person and training 
variables with the strongest interaction effects on training success, and to improve methods of 
quantifying their impact. Although better understanding and measurement of ATIs will improve 
the effectiveness of all types of training, the greatest gains may be made in adaptive training 
systems. 

Adaptive training systems consist of a number of different paradigms that embody 
different teaching strategies (e. g., exploration vs. coaching). The goal of adaptive training is to 
use student abilities and knowledge gained within lessons to diagnose student learning needs and 
develop individualized instructional strategies that help students learn (Sleeman & Brown, 1982). 
Improvements in training achievement and reductions in learning time have been reported when 
adaptive training systems were compared to conventional methods of instruction (e.g., 
classroom, self-study, on-the-job training) or control groups. 

In her meta-evaluation of four intelligent tutoring systems, Shute (1991) identified 
several learner characteristics that were related to performance on computer-based tutors: 
acquisition and retention were related to LISP performance; scientific inquiry skills were related 
to performance in microeconomics delivered by an intelligent tutor; working memory, two 
problem-solving abilities, and learning style were related to performance on a PASCAL 
intelligent tutor. 

These findings suggest that the interaction of learner characteristics with instructional 
method (and probably course content) partially determine training outcomes in an adaptive 
training environment. Therefore, evaluation of adaptive training systems must address ATIs in 
order to improve our understanding of training performance, and to determine the most efficient 
applications of adaptive training technology. 

Further, study of the interaction between learner characteristics and intelligent tutors will 
contribute to the future development of adaptive training systems and other methods of 
instruction. Baker and O'Neil (1986) noted that understanding the relationships between abilities 
and instructional options is relevant for the analysis and implementation of alternative student 
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models and tutoring strategies. They said that the interaction of intelligent tutors and cognitive 
style (e.g., the need for structure, the need for reflection, and the attribution of success and 
failure) is also important for the design and evaluation of adaptive training systems. 

In summary, the ATI literature contains many conflicting results, little replication, and 
some studies with poor research designs (Maldegen et al, 1996). Campbell (1988) and others 
(Snow & Lohman, 1984) have long called for improvements in ATI research as a strategy for 
improving training design and evaluation. Any improvements achieved could have wide-ranging 
effects across the spectrum of instructional methods, but especially in the design of adaptive 
tutors, because they capitalize on ATIs as a teaching strategy. 

In the next section we present our review of the training literature. We focused on 
identifying situational variables that may interact with student learning characteristics. The 
purpose of our review was to guide the development of the TCS, which we designed to measure 
the major training variables we identified through the review process. The following discussion 
provides an indication of the strengths and weaknesses of the training literature and the 
background for our choices of variables to include in the TCS. 

Review of the Training Literature 

Purpose of the Review 

We conducted a review of several bodies of literature, including those of technical 
training, human factors, industrial and organizational psychology, educational psychology, and 
instructional design, as the preliminary phase in designing the classification-ATI research 
method and developing the TCS. We considered this review to be essential because it provided 
us with research-based guidance for identifying the specific characteristics of technical training 
environments that may interact with learner characteristics. As we describe in the Method 
Chapter, our proposed approach involves using the TCS and MLR to identify and quantify ATIs 
related to specific training variables. We believe that this strategy of elucidating the interactions 
of learner characteristics with a number of training variables will help to reconcile the conflicting 
findings of previous ATI studies, most of which did not carefully control the training settings or 
include quantitative measures of ATIs. 

The TCS is contained in the Appendix and described below in the Method. It was 
designed to measure the aspects of entry-level Air Force technical training courses that might 
interact with learner characteristics to produce intra-individual differences in training 
performance in alternative learning environments. In designing the TCS we made the 
assumption that Air Force researchers studying ATIs in the near future probably would have 
access to only the individual difference variables as measured by the ASVAB. This is because 
data on other types of variables (e.g., motivation, interests, learning styles, self-efficacy, work 
values) were not available during TCS development, and no large-scale data collections outside 
of the cognitive domain were planned at that time. 
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However, this situation has since changed. As this report was being finalized, the Air 
Force began collecting data on a non-cognitive predictor of attrition called the Assessment of 
Individual Motivation (AIM). The AIM is a self-report measure of psychological temperament 
and motivation developed by the Army Research Institute (Young & White, 1998). It was based 
on an earlier Army instrument called the Assessment of Background and Life Experiences 
(ABLE), but is believed to be an improvement because it uses a forced-choice format to control 
for socially desirable response distortion and susceptibility to coaching. The AIM contains six 
scales that measure dependability, work orientation, adjustment, physical condition, dominance, 
and agreeableness. Since the data had not been analyzed before this report went to press, we do 
not have results that would provide us with any indication of the AIM's usefulness for detecting 
ATIs in Air Force technical training. However, we suspect that several of the scales (especially 
the first three) might be good predictors of training motivation, and may interact with 
instructional setting. 

While we conducted a broad review of the training literature, our emphasis was mainly 
on the aspects of training that we believed would interact with the cognitive aptitudes and job- 
related, technical interests measured by the ASVAB. Although we concentrated less on how 
training environments interact with other student characteristics (e.g., motivation and learning 
styles) not measured by the ASVAB, we would like to see future ATI research based on the 
classification-ATI paradigm include more than cognitive and military interest variables. 

Our reasoning stems from the differential prediction efficiency term in Brogden's 1959 
classification efficiency theorem. Recall that this term indicates that optimal person-treatment 
matching is strongly influenced by the amount of differentiation in a set of equations created to 
predict performance across alternative treatments (whether jobs or courses). The greater the 
dimensionality of the battery (i.e., the more different types of variables measured), the greater the 
opportunity for differential prediction efficiency across treatments. 

Among possible candidate variables for future ATI research, we recommend self- 
efficacy, career identity, learning style, cognitive style, and the various measures of motivation 
included in the AIM, to name a few. If the AIM or other instruments were to be used in a 
classification-ATI study, then the TCS should be expanded to include training variables that 
might interact with those measures, e.g., lateness records and participation in study groups. 

Cannon-Bowers, Tannenbaum, Salas, and Converse (1991) note that "reviews of the 
training literature over the past 20 years have painted an increasingly optimistic picture of the 
field" (p. 281). They quote John Campbell as stating more than 25 years ago that the training 
and development literature was "nonempirical, nontheoretical." While more recent reviews 
indicate that much work has been accomplished in integrating theory with training applications, 
Cannon-Bowers and colleagues note that there is still a gap between what training practitioners 
do and what training theory suggests. To fill the gap they propose a framework to link training- 
related theory and techniques. Their framework is based on three questions relevant to training 
research: 
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What should be trained? 
How should training be designed? 
Is training effective, and if so, why? 

They state: 

Overall, the framework suggests that research can be conducted in both training 
theory and training techniques, so that (1) theoretical findings can be translated 
into specific training techniques, and (2) the study of techniques can help to 
confirm/refine/expand related theory (Cannon-Bowers et al., 1991, p. 284). 

The Cannon-Bowers et al. (1991) framework illustrated the importance of examining 
literature related to both training theory and practice. Still, we found the literature to be lacking. 
In general, we found that the training literature contained either narrowly focused studies which 
were designed to examine a single, specific training variable (e.g., Bacdayan, 1994), or broad- 
based approaches to training that attempted to organize research methods and results (e.g., Ryder 
& Redding, 1993). The Mumford, Weeks, Harding, and Fleishman (1988) study is an exception 
to this generalization. It was very comprehensive and provided a great deal of detailed 
information for the design of the TCS. 

The following is a description of the training variables we identified as candidates for 
producing large interactions with student characteristics. The Mumford et al. (1988) study 
included^ thorough examination of course content variables. Most of the variables identified in 
other studies could be categorized as aspects of method of instruction. However, a small 
number were difficult to categorize. Our discussion is organized around course content 
variables, variables related to method of instruction, and a miscellaneous category that includes 
variables related to course content and skill acquisition. 

Course Content Variables 

Mumford et al., (1988) conducted a comprehensive study of student and course variables 
related to technical training performance for the Air Force. They collected 6 measures of student 
characteristics, 16 measures of course content, and 7 measures of training performance. These 
variables cover a much greater range of the training environment than most studies. They are 
important descriptors of the Air Force training process (see Table 2). Most measures were 
readily available from programs of instruction and administrative records. They did not have 
access to student characteristics (e.g., learning style, preferred learning strategies, and interest) 
nor did they have measures of teaching style or motivational techniques. 

Using measures of the student, course, and outcome variables from Air Force trainees in 
39 entry-level technical training courses,2 Mumford et al. (1988) were able to develop a 

2 The 39 training courses examined by Mumford et al. (1988) appear to be primarily lecture-based classroom 
instruction. 
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hypothetical model of the relationships among these variables. They found three primary course 
content factors: subject matter difficulty, occupational difficulty, and manpower requirements.3 

Table 2. Student Characteristics, Course Content, and Trainin g Performance Variables 

Student Characteristics Course Content Training Performance 

Aptitude Course length Assessed quality of performance 
Reading level Diversity Special individualized assistance 
Academic achievement motivation Practice Academic counseling 
Educational level Abstract knowledge requirements Nonacademic counseling 
Educational preparation Reading difficulty Washback time 
Age Programmed attrition Academic attrition 

Student-faculty ratio Nonacademic attrition 
Instructor experience 
Instructional quality 
Instructional aids 
Hands-on practice 
Feedback 
Yearly flow 
Manpower requirements 
Day length 
Occupational difficulty 

The primary course content variables had a stronger impact on training performance than 
did other course content variables (e.g., course length, feedback, student-faculty ratio, hands-on 
practice). However, Mumford et al. suggest that the other course content variables may exert a 
greater effect on performance than they observed in their study when the other and primary 
course content variables are not consistent. For example, a course with difficult material is 
usually long or provides much feedback to students. When a difficult course is short, then length 
is expected to play a larger role in training outcome than when the course is long. 

The authors (Mumford et al., 1988) concluded that the Air Force training process is 
complex and multivariate in nature and that "optimal prediction and sound understanding of 
training performance will be obtained only when both student characteristics and course content 
are considered" (p. 455). Their results indicated that training performance is a function of a large 
set of variables and no single variable will fully explain training outcomes. Their results also 
suggested that weak findings in previous research may reflect a limited focus on the setting 

3 Subject matter difficulty is measured by abstract knowledge requirements,programmed attrition, reading 
difficulty, and diversity. Occupational difficulty is measured directly by an occupational difficulty variable 
consisting of "aggregate evaluations of entry-level task-learning time weighted by the percentage of total time spent 
in task performance among individuals entering an occupational field" (Mumford et al., 1988, p. 447). Manpower 
requirements are measured by yearly flow and manpower requirements. 
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for learning (e.g., lecture course vs. CBT), rather than on variables that "condition the nature of 
the learning process" (e.g., subject matter difficulty). 

Training Variables Related to Instructional Strategies 

We define instructional strategy broadly as the manner in which material is presented and 
learned, and the medium of instruction used. The instructional strategy for a particular course 
consists of a large number of variables that characterize the learning situation, including teaching 
method; medium of instruction; role of the learner (i.e., active or passive); class size; type and 
amount of structure; amount and frequency of feedback to students; and control and flexibility of 
course content, sequence and pace. The distinction between teaching method and medium of 
instruction is often blurred, although a given instructional method may be used with a variety of 
media. For example, a human instructor or a computer may provide tutoring. Numerous 
instructional strategies are used in technical training and are referred to by their most salient 
characteristic—lecture, hands-on training, adaptive training, and distance learning (see Kearsley, 
1977; Reynolds & Anderson, 1992; Thompson, Simonson, & Hargrave, 1992). 

Our description of characteristics of instructional strategies relevant to developing the 
TCS is organized into studies that examine the effects on student performance of training 
methods and medium of instruction; class size; amount of course structure; feedback to students; 
and control of course content, sequence and pace. 

Training methods and medium of instruction. Shute (1991) found that students trained 
with an intelligent tutoring system learned faster and performed at least as well as or better than 
students in traditional training programs (e.g., human tutoring, classroom training, on-the-job 
training). Kozlowski (1995) compared mastery training to performance goal training. In 
mastery training, the "emphasis is on acquiring essential knowledge and skills, instead of 
achieving success and errorless performance" (Kozlowski, 1995, p. 8). Performance goal 
training, on the other hand, is characterized by the reinforcement of correct, errorless 
performance that promotes "short-term and surface processing strategies, such as memorization 
and rehearsal" (Kozlowski, 1995, p. 8). 

Controlling for ability and learning orientation preferences, mastery training led to faster 
learning of basic task knowledge than performance goal training. Also, mastery trainees showed 
improved development of meta-cognitive structure (i.e., comprehension of concepts, strategies 
linked to concepts, etc.); performance goal trainees showed little improvement. While 
performance goal trainees performed better than the mastery trainees during the training trials, 
they were not as successful as the mastery trainees were in adapting to the novel task. 

Although comparisons of one training strategy against another provide important 
information about the effects of the training environment on learning, they do not provide a 
complete picture of the relationships between student, training, and outcome. Consider how 
interactions between student characteristics and the training environment may affect the results 
of comparison studies. McCombs and McDaniel (1981) and Savage, Williges, and Williges 
(1982) demonstrated the impact of individual differences on training performance. Students 
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adaptively assigned to instructional modules (i.e., assigned to modules based on prior knowledge 
and learning style to maximize match between student and instructional module) completed 
lessons an average of 6.9 percent faster and received lesson scores an average of 2.1 percent 
higher than students randomly assigned to modules (McCombs & McDaniel, 1981). Savage et 
al. (1982) used motor and information processing tests to match individual characteristics and 
training type. Using adaptive training with fixed difficulty, Savage et al. found that matched 
students completed training 47 percent faster than randomly assigned students and 53 percent 
faster than mismatched students. 

Class size. Several researchers have studied the effects of class size on training 
performance for different types of learning. Smith, Neisworth, and Greer (1978) found that 
student participation is directly related to group size. Peterson and Janicki (1979) found that 
there is an interaction between class size and ability in retention of mathematics instruction at the 
elementary school level. High-ability elementary school children retained more mathematics 
instruction when taught in small groups, while their low-ability counterparts retained more when 
learning in a large-group setting (Peterson & Janicki, 1979). 

Shute, Lajoie, & Gluck (in press) suggest that class size should differ as a function of the 
type of task being learned. For example, performance-based tasks, such as flying an airplane, 
require individualized practice on component skills. Knowledge-rich tasks, such as 
troubleshooting or diagnosis, "tend to require associative learning skills and elaborative 
processing, and are typically well-suited to small-group instruction" (Shute et al., in press, p. 36). 

Kramer and Korn (1996) suggest groups of four to nine students for class discussion. 
Shute et al. (in press) state that the optimal size of groups for collaborative and cooperative small 
group learning environments is two-three individuals. 

Amount of course structure. A learning environment high in structure tends to be 
teacher-centered, uses pre-organized material, and includes very specific instructions and 
expectations (e.g., math classes) (Hunt, 1979). The need for structure is considered to be a 
learning style. Not only do students vary in their need for structure, but different subjects or 
disciplines tend to vary in their amount of structure. For example, mathematics tends to be more 
structured than the social sciences. There is a tendency for students with structured learning 
styles to perform better in engineering and math (structured subjects) and for students with less 
need for structure to perform better in social sciences (less structured subjects). However, the 
types of tests used with these subjects may confound this finding. Math tests tend to favor 
structure while social science tests tend to favor less structure (Hunt, 1979). 

Snow and Lohman (1984) concluded that there is evidence of a significant interaction 
between general academic ability and the degree of structure in a learning environment. 
"(Mjeasures of intelligence ... correlate more highly with learning when instruction is 
incomplete, complex, and relatively unstructured, and less highly as instruction is more 
complete, carefully structured, and controlled by teachers" (Snow & Lohman, 1984, p. 118). 
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There is also evidence that there are interactions between structure and preference for 
type of structure and between structure and student anxiety. Students in a college-level 
psychology course who reported a high preference for structure but were placed in a class low in 
structure scored lower than students who were placed in classes matching their preference for 
structure or those with a low preference for structure who were placed in high structure classes 
(Shaw & Bunt, 1979). De Leeuw (1983) found that more global teaching methods, characterized 
by less structure and larger steps, were beneficial for less anxious students, while analytic 
methods, including more structure and smaller instructional steps, were beneficial for more 
anxious students. Similarly, there was a significant interaction of software self efficacy and type 
of instruction with managers and administrators learning to use computer software with either 
video-modeling training or a one-on-one interactive tutorial on diskette. All trainees performed 
similarly in the video-modeling condition, but the low computer efficacy group scored 
significantly lower than the others in the tutorial condition (Gist, Schwoerer, & Rosen, 1989). 

Leeds On-Line Advisor (LOLA) is an example of a computer-based educational advisory 
system that provides advice to students who are learning on their own (Arshad & Kelleher, 
1990). LOLA is designed according to the notion that students who have been in teacher- 
centered learning environments may have some adjustment problems in higher-level education 
where there is less support and more choices. It advises students what to study (content, 
curriculum), how to study (methods, strategies), and when to study (schedule). Essentially, 
LOLA provides structure for the student who is learning on his or her own. LOLA incorporates 
five different methods—exposition, consolidation, remediation, test-diagnosis, and introduction. 
LOLA provides structure by suggesting one of the five methods based on the student's previous 
responses (Arshad & Kelleher, 1990). 

Feedback. Feedback is one of three fundamental factors that Taylor (1987) describes for 
selecting effective courseware. It may be informative or motivational. If a course provides 
feedback to the students, the feedback should be appropriate. It should be in line with the 
objectives of the course and the objectives and needs of the students taking the course. 

Knowledge-of-results feedback provides both motivation and guidance that enhance 
performance (Mark & Greer, 1995; Salmoni, Schmidt, & Walter, 1984). Trainees prefer 
immediate feedback (Reid & Parsons, 1996). However, while immediate feedback aids initial 
task performance, slight delays in feedback (i.e., 10-30 seconds) or other disruptions in initial 
learning may actually benefit transfer of training (Schroth, 1995). Also, feedback that is too 
frequent can interfere with the learning process and degrade performance (Salmoni et al., 1984). 

Brophy (1986) presents the idea of feedback intensity in the classroom: specific, 
immediate feedback at each stage of teacher-student interaction. For example, the instructor first 
presents information to the class; students then receive feedback as they discuss, answer and ask 
questions; the teacher then assigns practice exercises; and, finally, students receive additional 
feedback as the teacher monitors their individual work. 

While a complete review of the relationship of goal setting and feedback to training is not 
within the scope of this review, we briefly mention how feedback and goal setting work together 
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in the context of training design. Feedback on the extent of goal achievement is necessary, but 
not sufficient, for goal setting to have an effect. Hence, the pairing of feedback with specific and 
challenging, but attainable, goals is an important component of good training design (Goldstein, 
1993). 

Student control of course content, sequence and pace. The amount of control that a 
student has over the content, sequence, and pace of instructional material can vary from course to 
course. Taylor (1987) includes learner control as an important factor in the evaluation of 
courseware. Content control includes selection of the curriculum, objectives, and lessons. 
Control of learning strategy includes selection of the number of examples, practice exercises, and 
level of elaboration (Taylor, 1987). 

Thompson et al. (1992) stated that there may be optimal levels of learner control that 
should not be exceeded. They cite two studies that support this view. First, Tennyson (as cited 
in Thompson et al., 1992) demonstrated that adaptive programs are superior to programs that 
give the learner total control. Second, Allred & Lotactis (as cited in Thompson et al., 1992) 
found that although learner control may facilitate intrinsic motivation, learning outcomes may 
suffer. 

Kearsley and Hillelsohn (1982) report that high achievers or extremely goal-oriented 
students complete self-paced training programs faster than traditional training programs with 
their lock-step sequence and pace. Additionally, they report that distributed practice leads to 
better retention than massed practice, particularly for lower aptitude trainees. 

Other Training Variables Related to Course Content and Skill Acquisition 

This section includes studies that were difficult to categorize, but which addressed a 
number of variables related to course content and their potential for interacting with student 
characteristics to produce different learning outcomes either at different points in a course or in 
different training settings. 

Relationship of course content and training techniques to cognitive demands and skill 
acquisition. Schneider (1985) defines high-performance skills as those where the training 
requires trainees to expend considerable time and effort to acquire the skill, a substantial number 
of motivated individuals will fail the training, and there are substantial qualitative differences in 
performance between novices and experts. In high-performance skills, performance changes 
qualitatively over time, therefore training techniques compatible with initial skill acquisition may 
not be effective during later stages of skill learning. Schneider's work with high-performance 
skill training prompts the question: Which training techniques are best at different stages of skill 
acquisition? 

According to Anderson (1985), there is a three-phase sequence in skill acquisition: 
acquisition of declarative knowledge, knowledge compilation, and acquisition of procedural 
knowledge. In phase one, general intelligence is required. In phase two, perceptual speed is 
tapped. And in phase three, psychomotor abilities are needed. In the initial stage of skill 
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acquisition, learning the steps to perform difficult, novel, or complex tasks places high demands 
on cognitive resources. That is, the individual's cognitive workload is high and he or she cannot 
process additional information or do additional tasks. Therefore, skill acquisition is a sequential, 
and not a simultaneous, process. Ackerman, Sternberg and Glaser's (1989) three stages of 
practice—cognitive, associative, and autonomous—mirror Anderson's phases of skill 
acquisition. They note that learning or training a novel task requires basic content knowledge 
and cognitive ability. After some practice, applying the content knowledge requires perceptual 
speed. Finally, after sufficient practice, psychomotor abilities are needed for expert performance. 

Similarly, Kraiger, Ford, and Salas (1993) identified three general categories of cognitive 
measures used in training evaluation—verbal knowledge, knowledge organization, and cognitive 
strategies—which are sequential in the sense of skill training and acquisition. Verbal knowledge 
is taught and learned first, and is needed to move into the knowledge organization stage. The 
basic subject material must be learned and organized before cognitive strategies are applicable. 

In summary, the work of Schneider (1985), Anderson (1985), and others on skill 
acquisition and training stimulates questions about the relationship of training techniques to 
learning and the types of techniques which maximize learning at different stages of skill 
acquisition. 

Ryder and Redding (1993) created an Integrated Task Analysis Model (ITAM) as a 
framework for integrating cognitive and behavioral task analysis methods in the design and 
development of training using alternative approaches like instructional systems design (ISD). 
The IT AM skill taxonomy considers a large number of variables, for example, "demands on 
working memory, knowledge requirements (long-term memory), internal code (verbal or spatial), 
stimulus complexity and predictability, and overall mental workload" (p. 84). The memory 
requirements for different types of training are important considerations in the ITAM. 
Memorization ability can be an important prerequisite for training. 

A completely different aspect of training concerns tests, which are not usually thought of 
as part of the course content. However, tests have been shown to influence teacher and student 
performance (Frederiksen, 1984). Frederiksen suggests that different types of test items require 
different cognitive processes. Therefore, the type of test used in a class may influence teaching 
and learning strategies beyond merely teaching to and studying for a test. For example, a course 
that includes tests which ask the students to apply a principle will generally include both learning 
the principles, and teaching and practice of the application of principles. Further, test questions 
that prompt students to apply a principle generally require more thorough cognitive processing 
than items that require them to recall a principle. 

Goals and learning styles. Different learning (and training) strategies may be optimal for 
different training goals (Donchin, 1989) and different course content (Sein & Bostrom, 1989). 
Abstract learners performed significantly better than concrete learners on transfer tasks while 
learning an electronic mail system (Sein & Bostrom, 1989). According to Kanfer and Ackerman 
(1989), ability plays a role in how learning/teaching strategies are used by trainees. High ability 
students were more able to disregard the use of non-optimal learning/teaching strategies than 
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were low-ability students. In addition, task complexity interacts with the relationship between 
training goals and performance. For example, goal setting affects performance on simple tasks 
more than on complex tasks (Kanfer & Ackerman, 1989). 

Instructional method and learning styles. Gregore (1979) suggests that different types 
of instruction should be used for students with different learning styles. Student learning styles 
are defined as: 

characteristic cognitive, affective, and physiological behaviors that serve as 
relatively stable indicators of how learners perceive, interact with, and 
respond to the learning environment.... Styles are hypothetical constructs.... 
They are persistent qualities in the behavior of individual learners regardless 
of the teaching methods or content experienced (Keefe, 1979, p. 4). 

According to Gregore (1979), there are four learning patterns: concrete sequential, 
concrete random, abstract sequential, and abstract random. Training characterized by direct, 
hands-on experience, with step-by-step directions and clearly ordered presentations of material, 
is best suited for concrete sequential learners. Trial and error instruction and independent or 
small group training is characteristic of the concrete random style. Training emphasizing 
written, verbal, and symbolic tasks, and presentations with substance is most effective for 
abstract sequential learners. Holistic, unstructured multisensory training is most successful with 
abstract random learners. 

Table 3 presents the type of course materials and teaching strategies suggested by 
Gregore (1979) for each of his four learning styles. Students tend to prefer training that reflects 
their favored learning method (i.e., lecture, demonstration, discussion, film, print, etc.) (Dixon, 
1982). However, research on whether matching training techniques to learner preferences 
increases the amount learned has led to equivocal results.   As previously mentioned, Allred & 
Lotactis (as cited in Thompson et al., 1992) found that although giving the learner control may 
increase intrinsic motivation, learning outcomes may suffer. 

Table 3. Types of Instruction by Learning Types 
Learning Types Types of Instruction 
Concrete sequential workbooks, manuals, demonstration, programmed 

instruction, hands-on, field trips 
Abstract random movies, group discussion, short lectures with question and 

answer and discussion, television 
Abstract sequential extensive reading assignments, substantive lectures, audio 

tapes, analytical "think-sessions" 
Concrete random games and simulations, independent study projects, 

problem-solving activities, optional reading assignments 
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Motivational strategies. Smith-Jentsch, Jentsch, Payne, and Salas (1996) suggest that 
pretraining experiences can influence posttraining performance by increasing students' 
motivation to learn. They found a positive relationship between pretraining motivation to learn 
and gains due to training. 

In summary, several sets of situational training variables were identified as being 
important contributors to success in technical training and other learning contexts. However, the 
question of the existence and importance of ATIs is still in doubt. We believe that this is at least 
in part due to the following: the large number of variables that have been studied; the lack of 
replication of methods and studies; and limitations in the designs of many studies (e.g., small 
sample sizes). In the Method Chapter, which follows, we present a proposed strategy for 
improved precision in measuring ATIs and assessing multiple ATIs in a single study. 
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Chapter 2: Method 

Adaptation of the Personnel Classification Paradigm for Studying 
Aptitude-Treatment Interactions (ATIs) 

Overview of the Method 

We present in this Chapter an approach to the study of ATIs that employs a person- 
treatment matching research paradigm taken from personnel classification, and that quantifies 
ATIs in a new way. The method will produce a measure of ATIs that accounts for their practical 
effects on learning achievement, and, with further development, can be linked to training 
budgets. 

A key component of our method is the Training Characteristics Survey (TCS). It is a 
structured questionnaire that asks training subject matter experts (SME) to quantify the aspects of 
courses that we hypothesize will interact with learner characteristics to produce intra-individual 
variation in training achievement in different course settings (e.g., classroom/lecture, distance 
learning, computer-based training [CBT], adaptive tutors). The TCS is presented in the 
Appendix and described in detail below. 

The TCS data are entered into a multilevel regression (MLR) procedure that uses them to 
construct course-specific prediction equations. We considered MLR a useful technique for 
studying ATIs because it allows a researcher to compute a separate ATI term for each predictor- 
training -variable combination in a study. MLR also enables the researcher to identify the 
statistical significance and strength of interactions involving specific training variables. In 
contrast, the traditional ATI research method only permits the identification of global ATIs. 

The most important difference between the classification-ATI and traditional research 
paradigms is that the former uses optimal person-treatment matching software to assign students 
to courses. In contrast, students are randomly assigned to treatments in traditional ATI research. 
The matching software allows the researcher to simulate the benefits that could be obtained in 
real settings if ATIs were used to match each student to the most effective learning setting for 
him or her. If strong ATIs were identified by the MLR procedure, then a large gain in average 
performance across settings would be obtained from optimal matching in comparison to random 
assignment. If weak or no ATIs were found, then optimal and random assignment would 
produce equivalent levels of average performance. 

The description of the classification-ATI method is divided into the following sections: 

• development of the TCS 
• estimation of prediction equations: MLR analysis 
• selection of courses for a classification-ATI study 
• selection of criterion variables 
• selection of predictors 
• simulation of the student-course matching process 
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Development of the TCS 

The purpose of the TCS is to obtain quantitative ratings of training characteristics for 
entry-level technical training courses in the Air Force. It will allow a researcher to describe 
training in terms of those aspects that differentiate one course or course setting from another just 
as personal characteristics can be described with measures of individual differences. When used 
in conjunction with individual differences variables (e.g., the tests of the Armed Services 
Vocational Aptitude Battery [ASVAB]), the TCS will provide the data to identify specific 
learner-training-variable interactions in Air Force technical training. However, the TCS can be 
adapted easily for other types of training settings and evaluation research, because it was 
designed to measure major situational variables. 

We envisioned that training SMEs, who could include Air Force instructional system 
designers, course managers, and instructors, would complete the TCS. Ideally, each course 
selected for study would have approximately 10 independent SME ratings. If 10 SMEs are not 
available, then the instrument, with modifications, could be administered to students. Students 
would bring a different perspective to the training variable ratings, but they would not have the 
instructional knowledge of the SMEs. Thus, we would expect student ratings to provide less and 
somewhat different information than the SME ratings. If the TCS were administered to students, 
we would recommend having approximately 20 to 30 student respondents per course. Separate 
and combined analyses of SME and student responses would be necessary. 

We conducted several internal reviews of the TCS with training research and 
development experts to refine the instrument. We also conducted an external review with Air 
Force research psychologists. The instructions and a number of items were clarified as a result of 
the reviews. Before administering the survey, we recommend that a pilot test be conducted with 
a sample of potential respondents. 

Training variables included in the TCS. The TCS contains five sections: 

Background Information 
Occupational Area 
Method of Instruction 
Course Difficulty 
Course Content 

Multiple items were included in all sections except Occupational Area, which asked for the Air 
Force Specialty Codes (AFSCs) associated with the course being surveyed. We varied the types 
of items and response formats, and designed items to tap important aspects of the general areas 
with which they were associated. Some items (e.g., reading grade level) probably could be 
obtained more efficiently from training materials (e.g., the program of instruction) instead of 
from SMEs. If this is the case, we recommend that the researcher obtain all information possible 
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from existing Air Force materials and data bases. This would result in reduction of the size of 
the TCS and a concomitant reduction in survey time. 

As noted in the review of training literature above, we used the information we gleaned 
from it as the main guide for our TCS development process. However, we focused on training 
characteristics we believed would be well matched to individual characteristics measured by the 
ASVAB. For example, we considered mechanical ability and electronics knowledge, but not 
motivation or impulsivity, which are not measured by the ASVAB, and for which the Air Force 
currently does not have available instruments or data. We took this approach because the general 
view among Air Force researchers at the time we were developing the TCS was that ASVAB 
tests would be the only individual difference variables available for large samples of recruits in 
the near future. 

However, his situation changed unexpectedly late in the project, when a large data 
collection was begun on work motivation variables captured by the Assessment of Individual 
Motivation (AIM). Refer to the section above entitled Review of the Training Literature for a 
description of the AIM, and to the section below entitled Selection of Predictors for mention of a 
cognitive information processing battery, the Advanced Personnel Testing (APT) battery, which 
also may be appropriate to include in a future classification-ATI study. 

In general, our item development process revolved around the major sections of the 
survey, course content and difficulty, and method of instruction. The work of Mumford et al. 
(1988) provided the basis for the course content section because they identified and carefully 
analyzed 16 variables. The remaining training studies provided a range of variables that we used 
for the method of instruction and course difficulty sections. The training characteristics included 
pace of the class (see Kearsley & Hillelsohn, 1982), sequence of the instruction (see Taylor, 
1987), flexibility to change the pace or sequence (see Allred & Lotactis, as cited in Thompson et 
al., 1992), instructional methods (see Dixon, 1982; Kearsley, 1977; Thompson et al., 1992), and 
level of abstraction of course concepts (see Gregore, 1979). Several variables such as pace and 
structure, seemed to belong in two categories, so we placed items in both sections when 
appropriate. 

Additionally, research on individual differences was reviewed and considered from a 
training perspective to fill some of the gaps we found in the training literature. Several cognitive 
abilities defined by Fleishman and Reilly (1992), including written comprehension, mathematical 
reasoning, inductive reasoning, and perceptual speed, served as stimuli for developing 
corresponding training variables for the course content section. We also used the learning styles 
literature, which included variables such as need for structure (see De Leeuw, 1983; Hunt, 1979; 
Snow & Lohman, 1984), to suggest several items. 

Analysis of the TCS. We recommend that the TCS items'be subjected to principal 
components analysis with varimax rotation to identify the underlying dimensions of variability in 
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training environments.4 After varimax rotation to simple structure, we suggest that the first 
several factors, which account for the greatest proportion of variance and make conceptual sense, 
be selected. The training factors taken from the TCS data would serve as course-specific 
variables and would be entered into the MLR procedure described below to produce a set of 
differential course prediction equations that reflect ATIs, if they are present. 

Based on previous findings with job analysis data and MLR in personnel classification 
research (Harris, McCloy, Dempsey, Roth, Sackett, Hedges, Smith, & Hogan ,1991; Harris et al., 
1993), we would expect to find that three-five factors will describe the training environment 
adequately. The knowledge we gleaned from the training literature leads us to anticipate that the 
factors would reflect aspects of the method of instruction, course content, and job (see, for 
example, McCombs & McDaniel, 1981; Mumford et al., 1988; Snow & Lohman, 1984). 
Specifically, two of the factors probably would be measures of course cognitive demands and 
prior technical knowledge or experience needed (see Anderson, 1985; Kanfer & Ackerman, 
1989; Mumford et al., 1988). 

Estimation of Prediction Equations: MLR Analysis 

An example. Suppose that some new selection measures have been developed for 
predicting performance and it is of interest to investigate their predictive validity for several jobs. 
In this example, we have a criterion (e.g., a score from a hands-on test of job performance) Pfj 
for person i in job/. We assume that Py depends on an individual's aptitude test score (call it 
Ay; this could be a set of test scores) and some other set of other individual characteristics such 
as education and time in service (call this Ojß. We further assume that the effects of these 
independent variables could differ across jobs and that the jobs are a random sample of the total 
set of jobs. Thus, the model is: 

Ptj = ay + tjAij + YjOij + e,y (1) 

where ay is a job-specific intercept, ßy and y/ are job-specific slopes, and ezy is an error term. 
This model says that ay, ßy, and yy can, in principle, vary across jobs. Multilevel regression 
allows one to quantify the variation in these parameters and to determine if the variation is 
statistically significant. The variation is addressed by assuming that the parameters themselves 
have a stochastic structure. Namely: 

ay = a + aj ,      where      a; ~ N (0, o a) , (2) 

4 Note that Mumford, Weeks, Harding, and Fleishman (1987) reported range restriction in the reading difficulty of 
technical training manuals. There is likely to be restriction of range on the reading grade level item in the TCS. 
Other items may show restriction of range as well. Range restriction is inherent in the Air Force training system due 
to selection on AFQT scores. Since the TCS ratings would be used to provide measures of training characteristics in 
a sample of Air Force courses, range restriction will not be an issue. However, restriction in range in the predictor 
and training criterion variables should be statistically corrected for the calculations of the correlation coefficients of 
the prediction equations for each course in a study. 
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ßy = ß + bj ,      where      bj ~ N (0, o2
b) , (3) 

Yj = Y + cj ,      where      cj ~ N (0, a2
c) . (4) 

Equation 2 says that the intercept for job/ (o^) has two components: a, the mean of all the <x-.s 
(note the lack of they subscript), and at, a component that can be viewed as the amount by which 
job/s intercept differs from the average job's intercept (i.e., differs from a). Note that the model 
assumes the distributions ofay, bj, and CJ to be normal; their joint distribution is assumed to be 
multivariate normal. Although ay, bj, and CJ are completely determined for any specific job, the 
multilevel model conceives of these components as random, because the sample of jobs is 
assumed to be chosen at random. If the jobs are picked at random, these components are 
likewise random. Thus, coefficients modeled to vary across groups (here, jobs) may be labeled 
"random effects" (indeed, multilevel models are sometimes called random effects models), 
whereas coefficients modeled to remain constant across groups may be labeled "fixed effects." 
The variance components represent the variance of the random effects across jobs. For example, 
G a is the variance across jobs of the ay's, and therefore of the oy's, because a is the same for all 
jobs. 

Why MLR? A multilevel regression model was suggested for the current project because 
the data are multilevel, or "nested." Specifically, individuals are nested within training courses 
(i.e., each individual takes one training course rather than all training courses). Individuals 
represent the first level (level one) and training courses the second level (level two). Returning 
to the example above, we need simply substitute "training course" for "job" such that Py is the 
performance of individual * in training coursey. Equation 1 is a first-level equation: it models 
those observations nested within a higher level (i.e., individuals nested within training course). 
Specifically, the level-one equation models individual performance in a training course as a 
function of individual characteristics. Equations 2-4 are second-level equations: they model the 
variation in the first-level parameters. 

Ordinary least squares (OLS) regression models are inappropriate for multilevel data. To 
see why this is so, consider a simpler version of Equation 1 in which only the intercept (a) is 
allowed to vary across training courses. That is, we wish to estimate ay. The model is: 

Pjj = ay + £Aij + yOjj + &ij , (5) 

and ay is modeled by Equation 2. Substituting Equation 2 into Equation 5 results in a residual 
term of: 

fly + e,y , (6) 

implying that the residuals from two individuals in the same training course are correlated (i.e., 
individuals within a training course share the same error component, ay). The same situation 
obtains for the other parameters, as well. Therefore, applying the ordinary regression model to 
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these data would result in biased standard errors for the regression parameters (generally, biased 
downwards, increasing the chance of a Type I error). 

Rather than treating the variation in the job-specific parameters as error, we usually try to 
model this variation as a function of other variables. Hence, Equations 2-A (the second-level 
equations) are typically presented in the following form: 

ay = a + naMj + r\aj , (7) 

ß^ß+n^ + riß/, (8) 

Yj = Y + iiyMj + riYy , (9) 

where a, ß, and y are the mean values of the parameters across all courses (note the lack of 
they subscript). The n's are vectors of coefficients constrained to be the same across courses 
(i.e., they are "fixed" coefficients); Mj is one or more variables that describe characteristics of the 
training course (e.g., method of instruction, content), and the ri's are random variation.5 (To 
generalize the model to the universe of training courses, the course-level coefficients—the ns— 
cannot be course-specific.)6 

This structure for the model parameters assumes that some of their variation is due to 
characteristics of the training courses. The Mj variables represent characteristics of courses 
believed to influence an individual's performance in that course. Note that the training factors 
derived from the TCS will be used to provide the Mj variable scores. The inclusion of such 
course characteristic information allows one to generalize from a small sample of training 
courses to the population of military training courses. The amount of variance in the parameters 
that is unaccounted for can be reduced, when some portion of the parameter variation is due to 
course characteristics and the proper course characteristic variables (Mj s) are included in the 
multilevel model. This will increase the accuracy of prediction or, equivalently, decrease the 
standard error of estimate. 

The Mj variables reduce the uncertainty in the course-specific parameters by absorbing 
some of the variation across courses that would be part of the random effect if the Mj variables 
were not in the model. For example, for the course-specific intercept ay, the term na Mj models 
part of the variation in intercept parameters across courses that otherwise would be part of the 
random effect aj. Including the second-level variables should reduce the uncertainty in the 
estimation of the ay's. This same logic holds for all other model parameters. 

5 In this multilevel parameter specification, the course-level variables (i.e., the Mj variables) do not need to be the 
same for all parameters. In addition, the random error terms may covary. 
6 Those more familiar with analysis of variance will recognize this as a mixed model—one having both random and 
fixed effects. 
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The multilevel model may be approximated by a fixed-effects (i.e., conventional OLS) 
regression model. Substituting Equations 7-9 into 1 gives the following: 

Pij = (a + naMj + ity) + (ß + npMj + i\y)Ay + (Y + nYMj + r\Yj)Oij + ey , (10) 

Multiplying through and collecting terms yields: 

Pij - a + $Ajj + yOfj + (naMj + u^MjAy + nYMjOy) + Z , (11) 

where: 

Z=i\aj + i\fjAij + i\yjOij + ejj . (12) 

Thus, a model containing course characteristics obtained from the TCS, and interactions between 
course characteristics and individual difference variables, may be used to estimate the structural 
parameters (regression coefficients) in the multilevel analysis. The standard errors of the 
parameter estimates for this model will be biased, however, due to the failure of the fixed effects 
regression to adequately model the correlations among errors in the multilevel error structure. 
The standard errors will typically be smaller than they should be, thereby increasing the 
probability of a Type I error. 

Deriving course-specific equations. One of the principal advantages of the multilevel 
regression approach is that it allows performance predictions for courses having no criterion data. 
Using ordinary regression, performance scores can be estimated for individuals without criterion 
data by weighting their predictor information by the appropriate regression coefficients. 
However, performance data are needed in ordinary regression for some individuals in that course 
before the course-specific equation may be estimated. By including course characteristics in our 
multilevel model, course-specific parameters can be derived for any course having course 
characteristic data without performance data. These parameters are functions of the course 
characteristic variables. 

For example, let us assume that the mean effect of A across courses is ß = .074 and that 
we have four course characteristic variables (mean=0, sd=1.0). Also assume that the respective 
weights for these course characteristic variables (i.e., the np coefficients) are -.030, .001, -.020, 
and -.036. Substituting these values into Equations 7 through 9 allows the estimation of course- 
specific parameters. Equations 7 through 9 also demonstrate that these estimated course-specific 
parameters are deviations from the mean parameter estimate—the degree of deviation being a 
function of the course's factor scores. If we assume that the scores on the four course 
characteristics for a given training course are -0.68, -2.41,2.33, and 0.18, then substituting these 
Mj values and the multilevel parameter estimates just given into (8) yields the A parameter (ßy) 
for predicting performance of individuals in this training course: 

ßy^ß + np^ + np/ 
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= .07 + [(-.030X-.68) + (.001)(-2.41)+ 
(-.020)(2.33) + (-.036)(-.32)] 

= .07 + (-.03) 

= .04. 

This procedure thus affords course-specific parameters for courses without criterion data 
(see McCloy, 1994, for a description of generating job-specific performance equations for jobs 
that have no criterion data). Note that the value for ß and the four np values remain constant in 
the ßy equations for all training courses; the equations differ only in the Mi values. 

The model also may be amended to include additional or different individual and course 
characteristics. All that is required is to reestimate the multilevel regression equation with the 
new variables in the model so that new parameter values may be obtained. The procedure just 
described still applies. 

Selection of Courses for a Classification-ATI Study 

Selecting the treatment sample is an important part of the classification-ATI research 
method. In traditional classification research, the sample is comprised of jobs or job families. In 
the training context, the treatment sample will be comprised of courses. The purpose of this 
section is to present the major issues that should be considered when designing a sampling plan 
for a classification-ATI study. We discuss both general topics and those that are specific to the 
Air Force's technical training system. First, we define the scope of a course in the context of Air 
Force technical training. Second, we discuss a major obstacle we encountered in selecting a 
sample of courses for a potential study. Third, we suggest a set of Air Force Specialties (AFSs) 
from which courses could be selected if a study were conducted in the near term, and the general 
issues we considered in making our suggestions. 

Definition of course. We defined course in this research method to include all 
instructional units in the Air Force's training pipeline. The training pipeline includes all 
fundamental and specialized units of instruction after basic training up through completion of 
3-level course. We focused on 3-level courses only, which provide fundamental skills training to 
qualify recruits in a particular career field. We limited our proposed sample to this level of 
training because it provides ample numbers of students and is delivered in a fairly standardized 
manner across instructors. More importantly, selection of only 3-level courses limits our student 
sample to enlisted, entry-level personnel and levels the playing field in terms of what they 
already know going into training. 

Further, limiting our sample to entry-level recruits and courses provides a rationale for 
the student-course matching simulation, which provides the estimate of the practical effects of 
ATIs on training performance.   We describe the matching procedure below in the section 
entitled Description of the Student-Course Assignment Simulation. It would not make sense to 
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match Air Force enlisted personnel of different ranks to courses at various levels without 
considering experience, which is not a variable in our model. 

Practical considerations in selecting a sample of Air Force courses for a 
classification-ATI study. As the first step in designing the treatment sampling plan, we 
conducted an informal survey of the Air Force 3-level technical training system. This included 
talking to Air Force training researchers and training managers at the technical schools about the 
types of courses available across the major occupational areas, student flow rates and other 
details about specific technical courses. Additionally, we reviewed the course catalogs within 
each technical area and discussed with training managers new courses and changes in existing 
courses. 

Before presenting our suggestions for sampling Air Force courses, we describe a major 
constraint we encountered in designing the sampling procedure: very little variation in 
instructional methods. We found that most Air Force courses are taught in the classroom, with 
some having CBT or interactive videodisk (IVD) modules. In many cases the CBT or IVD 
modules are supplementary, rather than integral, parts of the course. A large number of courses 
include simulation modules. Distance learning is becoming increasingly prevalent in Air Force 
training. However, courses were just going on-line during this project, so no distance learning 
data were available. Finally, we found no operational courses based on adaptive tutors. 

When we first proposed this project, our goal was to focus on method of instruction as 
our treatment variable. We expected to be able to compare methods of instruction within course 
content area (e.g., electronics courses presented in classroom, CBT and distance learning 
settings). However, we could not find any existing Air Force technical courses simultaneously 
presented by different methods of instruction. We did identify two or three courses that were 
changed from substantially classroom to mainly CBT, and one that was in the process of being 
reversed from CBT back to the classroom. But they were not adequate to fit our design for a 
variety of reasons (e.g., differences in the sampling tirneframe for the two instructional methods). 

Further, we could not sample instructional method across occupation. Although we 
found a large number of courses with CBT, IVD or simulation modules, we did not find a 
sufficient number that were completely, or even mainly, presented in any of these media. 
Consequently, we had to drop our notion of focusing on method of instruction as the main 
training characteristic and modify our sampling plan. 

Our first idea was to sample modules within a given course that differed in medium of 
instruction. However, we rejected this approach because it does not fit the student-course 
matching procedure that forms the foundation of the classification-ATI paradigm. The matching 
procedure is based on the assumption that the treatments are equivalent in nature. Since modules 
are presented sequentially within a course (with many modules dependent on material learned in 
earlier modules) and all modules must be taken for course completion, the optimal matching of 
students to one of several modules did not make sense. 
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We finally settled on a compromise sampling design that meets all the assumptions and 
requirements of the classification-ATI paradigm and will produce a meaningful estimate of the 
effects of ATIs on mean predicted training performance (MPTP). The approach we recommend 
is to sample AFSs (each with an associated course) across the four main Air Force occupational 
areas: mechanical (M), administrative (A), general (G), and electronics (E). Further, we suggest 
that the researcher choose AFSs with courses that vary on as many of the training characteristics 
in the TCS as possible. We believe that by obtaining a good deal of variability in training 
environments, a researcher using this sampling approach would be able to identify a few strong 
training factors outside of occupational specialty. 

We realize that student-course matching across occupational area is not practical, or even 
desirable, within the Air Force training environment, and we do not mean to suggest it as a 
change in policy. We suggest it only as a sampling procedure that solves the applied research 
problems of obtaining enough variation in technical training variables, and a large enough 
sample of courses, to provide an adequate test of the classification-ATI paradigm in the Air 
Force. 

Although the compromise sampling procedure is not optimal for policy makers, and not 
one we would recommend if enough courses with different instructional methods were available, 
it will produce a good test of the classification-ATI paradigm, and one that is easy to 
communicate to a variety of audiences. Ideally, the Air Force will develop some courses with 
alternative methods of instruction (e.g., adaptive tutors and distance learning) in the near future 
so that a more realistic course sampling plan can be devised to test the classification-ATI 
paradigm. 

In summary, we want to stress that our proposal of an ATI study that assesses student 
performance in alternative occupational areas was due solely to the absence of a variety of 
instructional methods in the Air Force technical training system. We attempt to moderate the 
influence of occupational specialty in the analysis by suggesting that the researcher choose 
courses that also vary on a large number of other training-related variables. Again, the design 
would produce a good initial test of the usefulness of the classification-ATI research paradigm 
for investigating ATIs in technical training environments. 

Selection of the course sample. Tables 4 through 7 present the AFSs that we propose be 
included in a classification-ATI study by mechanical, administrative, general, and electronics 
(MAGE) occupational category. Our criteria for selecting AFSs (with their associated technical 
courses) were that they varied in terms of the major training variables measured by the TCS, 
namely, course content, level of difficulty, occupational area, and wherever possible, method of 
instruction. Examination of the TCS in the Appendix shows that we attempted to capture 
variation in instructional method by considering other variables in addition to media. For 
example, we asked about student-teacher ratio, number of tests and quizzes, and pace of the 
course. 
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Table 4. Selected Mechanical Air Force Specialties 

AFSC Title Notes * 
2A3X3 Tactical Aircraft Maintenance "shredded" AFS, possible base course 
2A5X0 Strategic Aircraft Maintenance "shredded" AFS, possible base course 
2A5X1 Airlift Aircraft Maintenance "shredded" AFS, possible base course 
2A6X1 Aerospace Propulsion "shredded" AFS, possible base course 
2A6x5 Aircraft Pneudraulic Systems "shredded" AFS, possible base course 
2A4XX Weapon Control Systems "shredded" AFS, possible base course 
2W1XX Aircraft Armament Systems "shredded" AFS, possible base course 
2A6X4 Aircraft Fuel Systems 
2A7X1 Aircraft Metals Technology 
2A7X3 Aircraft Structural Maintenance 
2A7X2 Non-destructive Inspection 
2M0X2 Missile Maintenance drawdown impacted 
2M0X3 Missile Facilities drawdown impacted 
2T3XX Vehicle Maintenance "mechanic", "shredded" AFS, possible base 

course 
2E3X1 Structural Specialist 

* "Shredded" AFS refers to the differentiation of AFSCs into specialties that reflect particular aircraft. 
Possible base course indicates that all AFSCs with the same first three digits are likely to share a single set 
of preliminary courses. 

Table 5. Selected Administrative Air Force Specialties 

AFSC Title Notes 
3A0X1 Information Management large AFS 
6F0X1 Financial Management large AFS 
3S0X1 Personnel large AFS 
3S0X2 Personnel Systems 
2T0X1 Traffic Management 
2S0X1 Inventory Management 
6C0X1 Contracting 
2R1X1 Maintenance Scheduling 
1C0X1 Airfield Management 
1C0X2 Operations Resource Management 
2S0X3 Materiel Storage and Distribution 
2T2X1 Air Transportation 
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Table 6. Selected General Air Force Specialties 

AFSC Title Notes * 

3P0XX Security & Law Enforcement large general area, 2 AFSs, should have common basic 
course 

1A2XX Loadmaster large aircrew areas, high math ability 
1A0XX In-FIight Refueling aircrew, requires hand-eye coordination 
1N0X1 Intelligence Ops requires high general ability 
1N4X1 Signals Intelligence requires high general ability 
1N0X2 Target Intel requires high general ability 
1N3XX Cryptolinguist "shredded" AFS, possible base course 
1W0XX Weather high math ability 
1C1XX Air Traffic Control high electric ability 
5JOX1 Paralegal 
1TOXX Survival Training requires both content knowledge and teaching ability 
4N1X1 Surgical Service "shredded" AFS, possible base course 
4N0X1 Medical Service "shredded" AFS, possible base course 
4TOX1 Medical Laboratory "shredded" AFS, possible base course 
4ROX1 Radiology 
4PX01 Pharmacy 
4YOX1 Dental Assistant 
* "Shredded" AFS refers to the differentiation 
course indicates that all AFSCs with the same 

of AFSCs into specialties that reflect particular aircraft. Possible base 
first three digits are likely to share a single set of preliminary courses 

Table 7. Selected Electronics Air Force Specialties 

AFSC Title Notes * 
2A0XX Avionics Test Station and 

Component 
"shredded" AFS, possible base course 

2A3XX Avionics System "shredded" AFS, possible base course 
2E0X1 Air Traffic Control Radar "shredded" AFS, possible base course 
2E0X2 Aircraft Control and Warning 

Radar 
"shredded" AFS, possible base course 

2E1X1 Wideband Communications 
Equipment 

"shredded" AFS, possible base course 

2E8X1 Instrumentation and Telemetry 
Systems 

"shredded" AFS, possible base course 

2E6X1 Systems 
Installation/Maintenance 

"shredded" AFS, possible base course 

2E1X2 Meteorological and Navigation 
Systems 

2E0X1 Electrical Systems basic electrician skills 
1N5XX Electronic Intelligence high general, high electronics abilities 
1A4XX Airborne Warning Command 

and Control System Operator 
aircrew position-high general ability 

2M0X1 Missile Systems Maintenance impacted by drawdown 
* "Shredded" AFS refers to the differentiation of AFSCs into specialties that reflect particular aircraft. Possible base 
course indicates that all AFSCs with the same first three digits are likely to share a single set of preliminary courses. 
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Given that a variety of occupational types is represented in our sample, we would expect 
to find some variation in training methods across courses because the methods will be at least 
partially adapted to course content.   For example, courses in the administrative career field 
might rely heavily on drill and practice, while courses in the electronics and mechanical career 
fields might rely heavily on hands-on performance tasks. By selecting equal numbers of courses 
within different occupations, we attempted to tap whatever variation there is in method of 
instruction in Air Force 3-level technical training. 

Another consideration in selecting AFSs and the courses associated with them is sample 
size. In a classification-ATI study, sample size refers to both the number of students within a 
course or treatment and the number of treatments. Concerning the number of students who have 
attended and completed a course (i.e., student flow) for which predictor and criteria data are 
available, it is always advantageous to obtain large sample sizes. However, small within course 
samples are not an insurmountable problem with the proposed classification-ATI design. 

The MLR procedure we described above in the section entitled Estimation of Prediction 
Equations: MLR Analysis was developed specifically for educational research. It allows the use 
of courses with small samples because the individual difference parameters shown in Equation 1 
are estimated from the total sample. In other words, the samples within courses are pooled for 
estimation of the predictor weights. This permits the inclusion of small samples without creating 
the deleterious effects of sampling error on the standard error of the predictor weights. 

Regarding the number of courses, the classification-ATI research paradigm can be 
applied to a large number of courses, or to as few as two or three. However, including many 
courses can enhance the potential for obtaining person-treatment interactions, when the courses 
vary substantially in the training characteristics under investigation. In other words, when 
training settings are very different, having a large number of courses increases the chance that a 
student will perform differently in at least two settings. 

A large number of treatments is needed for the MLR procedure to obtain precise 
measurement of course characteristics when computing course-specific prediction equations. 
This is because course characteristics are sampled in the same manner as individual difference 
variables, and the same rule of thumb about the ratio of number of variables to sample size 
applies. In other words, MLR requires about 8 to 10 courses per training variable for accurate 
measurement. Since we would expect to find three-five relevant training factors in the Air 
Force, the sample should have at least 20-40 courses. Although we recommend adhering to this 
rule of thumb, Harris et al. (1993) obtained stable estimates of person-treatment interactions in an 
OPJM study that had a sample of only 10 treatments with four treatment variables. They did not 
report any explanation for this finding, but it suggests that it may be worthwhile to try MLR with 
as few as 10 courses. 

When fewer than 10 courses are available, say two, the classification-ATI paradigm can 
be used with traditional multiple regression, instead of with MLR. The downside is that 
traditional regression will not provide the detailed information on specific learner-training 
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interactions that MLR does, because it cannot employ the TCS data in forming the prediction 
equations. 

In summary, Tables 4 through 7 contain a total of 56 AFSs, each associated with a 
separate course as defined above. The AFSs were selected to provide variation in occupational 
area, course content and difficulty, and method of instruction. In addition, these AFSs have high 
student flow rates, which would produce large within-course samples. If other AFSs with small 
course samples would add substantial differentiation, we suggest they be considered, since MLR 
compensates for small samples. Finally, if the Air Force expands the instructional media it 
employs in the near future to include adaptive tutors and distance learning, then courses 
presented in these formats also should be given strong consideration in designing a classification- 
ATI sampling plan. 

Criterion Variables 

When the classification research paradigm is used in employment testing, the criterion 
variable typically is a measure of performance on the job. This is the traditional criterion in 
personnel research because improving productivity is the major reason for instituting 
employment testing procedures. Further, job performance is considered to be a good indicator of 
global organizational effectiveness that can be tied to dollar estimates of a test's utility. Other 
criteria (e.g., attrition) have received less attention. Harris et al. (1993) incorporated both 
attrition and job performance into their model of classification. 

We suggest that the criterion variable in a classification-ATI study be numerical final 
course grade. Other possible criteria could be training time, washback rate, and number of 
extracurricular tutoring sessions. We believe that a measure of training achievement is superior 
to the other criteria because it is a global measure of learning success that represents performance 
in the entire course. Additionally, because it is comprehensive, final course grade probably is 
less biased by variables outside the control of the student than are training time, remedial 
tutoring sessions, and washback rate. Training performance measures have been used in some 
OPJM research as a surrogate for job performance when that criterion was not available (Alley & 
Teachout, 1992; Darby et al., 1995; Johnson, Zeidner, & Leaman, 1992). These studies showed 
positive results with OPJM strategies compared to random assignment, thus providing a 
precedent for use in a classification-ATI study. 

In creating the criterion variable for a classification-ATI study, we suggest that only those 
units that assign grades be included in the analysis; all units that assign "pass/fail" scores should 
be excluded because they do not provide enough information about performance to be useful for 
identifying statistically significant ATIs. 

Selection of Predictors 

The major objectives in constructing a differential prediction battery are to maximize the 
potential for differential prediction across courses (reflected in the term [1 - r]V2 in Brogden's 
1959 classification theorem) and the average validity of the prediction equations (i.e., R). 
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Johnson and Zeidner (1991) specified that the objectives are accomplished by selecting a 
multidimensional set of individual difference measures with a view toward covering as much of 
the criterion domain as possible. 

A measure of general cognitive ability (g) is the best single predictor of both job and 
training performance (Hunter, 1986; Hunter & Hunter, 1984; Ree & Earles, 1991). However, the 
addition of other measures, (e.g., psychomotor ability, job-related personality variables, and 
interests) has improved both differential prediction efficiency across treatments and predictive 
validity with both criteria in person-job matching studies (Hunter & Schmidt, 1982; Schmidt, 
Hunter, & Dunn, 1987; Statman, 1993; Statman et al., 1994; Wise, McHenry, & Campbell, 
1990). 

Traditionally ATI research is designed to investigate a single predictor across diverse 
training environments. Often it is a measure of g, but Maldegen et al. (1996) found a large 
number (44) of other predictors (e.g., working memory, motor skills, anxiety, conformity, 
impulsivity, and self-efficacy) in ATI research, and little replication of studies. The lack of 
consistency in the selection of predictors (and training settings—another finding by Maldegen et 
al. [1996]) may be partially responsible for the confusion of results in ATI research. 

The classification-ATI paradigm we designed may provide a strategy for addressing this 
limitation, because the MLR procedure allows us to examine the statistical significance and 
strength of multiple predictor-training-variable interaction terms simultaneously. By studying 
more than one learner characteristic in a single ATI study, we may gain insight into the reasons 
for the variation in ATI results obtained in separate studies of these predictors. 

Although the results of the ATI and training literatures are far from unequivocal about the 
presence of ATIs, our review and that of Maldegen et al. (1996) indicated that general cognitive 
ability, cognitive and learning styles (especially verbal learning ability), prior knowledge of the 
course material, psychomotor skills, visual-spatial ability, and working memory would make 
good candidates for inclusion in a battery designed to detect training ATIs. Since the focus of 
our proposed classification-ATI research is job-related technical training, measures of vocational 
interest and job-related personality characteristics (e.g., those measured by AIM) might also 
interact with training variables. 

We recommend use of a highly diversified battery of cognitive and non-cognitive 
predictors with the classification-ATI method. However, the Air Force only had data available 
for the ASVAB, which is fundamentally a cognitive test, across a broad range of 3-level courses 
during this project. Consequently, we propose that initial classification-ATI research be 
conducted with the ASVAB. 

The Air Force's APT battery may be considered in the future because predictor and 
criterion data were collected recently in 18 AFSs. Since the APT is an information processing 
battery, which includes measures of working memory and processing speed for verbal, 
quantitative and spatial abilities (Kyllonen, 1994), it may provide additional sources of variance 
in training performance that cannot be obtained from the ASVAB. Another possibility for 
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inclusion in future classification-ATI research is the AIM, which was described above in the 
Review of the Training Literature. 

In brief, the ASVAB comprises eight power and two speeded tests. Factor analytic 
studies consistently indicate that most of the variance in the 10-test space is accounted for by 
four factors: verbal ability, speeded performance, quantitative ability and technical knowledge 
(which includes mechanical, electronics and auto shop information) (Welsh, Kucinkas, & 
Curran, 1990). As mentioned in the description of the TCS development process, we designed 
that survey to tap elements of the training environment that are congruent with the AS VAB to 
maximize the potential for finding ATIs. (William Alley, Ph.D., of the Air Force made this 
valuable suggestion at the start of the project.) If other measures of learning characteristics are 
incorporated into Air Force research, then the TCS should be expanded to include training 
characteristics related to those variables. For example, if the AIM were to be used, then the TCS 
should be modified to include additional training characteristics that researchers hypothesize 
would tap motivation, dependability and work ethic (e.g., absences and attendance at extra- 
curricular activities). 

Simulation of the Student-Course Matching Process 

Simulation of a student-course matching process is the core of the classification-ATI 
research paradigm. We divide our description of the process into five sections: 

• description of the student-course assignment simulation 
• measurement of student-course matching simulation results 
• specification of the experimental conditions 
• the classification cross-validation procedure 
• use of synthetic samples for cross-validation 

Description of the student-course assignment simulation. Figure 1 presents a schematic 
diagram that compares the traditional ATI research design to the classification-ATI method. In 
the traditional ATI study depicted on the left of Figure 1, students are randomly assigned to 
courses (treatments). Pretest and posttest (i.e., criterion) measures are obtained for each student. 
A separate regression equation is computed for each course by regressing the criterion (e.g., 
training achievement) on the pretest measure. Significant differences in the slopes of the 
regression lines across courses indicate the presence of an ATI. 

The traditional ATI method has two significant limitations that are addressed by the 
classification paradigm we propose. First, it does not produce a quantitative measure of the 
effect of an ATI on training performance. Second, it presents a global indication of differences 
in training environments, but does not provide a means for identifying the exact nature of the 
training characteristics that may be producing intra-individual differences in learning across 
settings 
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Figure 1. Two Approaches to Studying ATIs 

The right side of Figure 1 depicts the classification-ATI methodology, which employs a 
very different approach for detecting ATIs. This method uses an optimal student-course 
matching process to assign individuals to treatments. The objective of the assignment procedure 
is to place each student in the course in which he or she is expected to perform best. 

A student's predicted performance in each course is estimated by a course-specific 
prediction equation, which is a weighted composite of predictor information and predictor-by- 
training-variable interaction terms (see Estimation of Prediction Equations: MLR Analysis for 
how to compute the test weights and ATI terms).7 Each student receives a separate predicted 
performance score for each course. If the TCS and MLR procedure successfully detect ATIs, 
then each student will have a different score for each course. 

The differences in a student's scores across courses will be a direct function of the ATIs. 
This is because the MLR procedure computes one set of test weights for all courses, with only 
the interaction terms varying according to the variation in training characteristics across courses. 
(Remember that the MLR procedure provides a statistical test of the significance of the 
interaction terms, which is one indication of the presence of ATIs.) 

7Note that we standardize the criterion scores within course to control for differences in the difficulty level of the 
performance measures. We also use standardized test weights (removing the regression constant from the 
prediction equations) to control for the effect of different within-course mean criterion scores on assignment. 
Variation in within-course mean scores would indicate that courses differ in difficulty level. The TCS contains 
items on course difficulty. Therefore, if any significant differences in difficulty among courses do exist, their 
effects will be seen in the interactions of the course difficulty factor with the predictors. 
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In the example on the right side of Figure 1, all three students have a different score for 
each treatment setting. For instance, Person one has scores of 10 in course A, 8 in course B, and 
7 in course C. The variation in the scores of the three students indicates the presence of ATIs. 

Linear programming (LP) software is used to conduct person-job matching simulations in 
employment testing. We suggest that the same type of software be used to conduct the student- 
course matching process. Depending upon the purpose of the ATI study, the LP can be designed 
to control or account for organizational constraints (e.g., differences in course sizes). If the 
purpose is to conduct an experimental study comparing different methods of instruction (e.g., 
classroom, CBT, distance learning), then organizational variables should not be included in the 
design of the LP. In this case, the simulation simply should assign each person to the treatment 
for which he or she has the best score. The result will be optimal assignment and optimal 
average performance in all courses. 

However, if the purpose is to evaluate ATI effects under fairly realistic conditions, then 
the LP should reflect practical organizational constraints. Important variables to consider might 
be course size and seasonal variation in student sub-populations (e.g., graduating seniors vs. 
recruits who enter the Air Force during the school year). The constraints and procedures for 
making trade-offs between achieving optimal performance and meeting other organizational 
goals are programmed directly into the software, which is a mathematical model designed to 
simulate the organization's policy. When organizational constraints on optimal assignment are 
included in the matching LP, average performance after assignment is reduced. This is because 
the LP will make tradeoffs between producing the highest average performance and 
accommodating factors like course size or seasonal variation in size of the Air Force applicant 
pool. 

Measurement of student-course matching simulation results. Figure 2 presents an 
overview of the variables, procedures and sequence of operations that make up the proposed 
classification-ATI paradigm. The process of preparing the data requires selecting the course- 
specific criterion variable and the predictors of learner characteristics. When MLR is employed, 
the training characteristic variables in the TCS must be logically matched to learner 
characteristics and the hypothesized relationships stated a priori. Finally, a representative sample 
of courses, which is hypothesized to vary along the dimensions under investigation, must be 
selected. 

As mentioned above, two or more course settings can be studied with the classification- 
ATI design. However, if MLR is employed, then a large number of courses is needed to provide 
an adequate number of observations for the training characteristic variables. In MLR the two 
levels of variables for which samples must be obtained are individual difference characteristics 
and treatment characteristics. If only a small number of courses are available or desirable for 
study, then traditional regression analysis can be used instead of MLR in our proposed design. 
However, the TCS cannot be used with traditional regression and the researcher will not be able 
to obtain information about the specific training characteristics involved in ATIs. 
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Figure 2. Overview of the Classification-ATI Research Paradigm 

As we will discuss under the classification cross-validation procedure, the total sample of 
students in all courses is randomly segmented into subsamples that are used to construct the 
course-specific prediction equations, provide the pool of students for optimal person-treatment 
matching, and evaluate the ATI effects after the assignment simulation. 

An example of a student-course matching simulation that uses the TCS contained in the 
Appendix, MLR, and the 3-level courses from the AFSs listed in Tables 4-7 follows. Select a 
representative sample of students from each course for a given time period. Use two-thirds of the 
sample to compute the predictor weights for the first level prediction equation. Administer the 
TCS to a sample of 5 to 10 training SMEs in each course (e.g., training developers and managers, 
and instructors). Compute a principal components analysis and a varimax rotation to simple 
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structure of the TCS items. Obtain mean principal component scores for each course on factors 
with eigenvalues > 1.00. These principal components will be the training characteristic 
variables.   Compute the interaction terms between the training and learner variables using the 
MLR procedure described in Estimation of Prediction Equations: MLR Analysis. This will result 
in a set of course-specific regression equations that reflect both learning characteristics and 
statistically significant ATIs. 

Once the course equations are obtained, compute a separate course score for all members 
of the one-third hold-out sample. Then run this sample through the LP matching software. The 
outcome will be the assignment of each student to the course for which he or she had the best 
score. Since our proposed design samples across occupational areas and training characteristics, 
we suggest incorporating variation in course size as a constraint into the LP. 

The measure of the effect of any ATIs identified in the MLR procedure is MPTP. As 
stated in the Introduction, this is a measure of the average performance of all students in all 
courses after assignment. As in the personnel classification paradigm, the dependent variable 
should be a standardized score that is obtained by standardizing the criterion variables within 
each course. (See Footnote 7 for a more detailed discussion of this issue.) We suggest using a 
mean of 0.00 and an SD of 1.0 for ease in interpreting the results. 

If no significant ATIs are present, then each student would have about the same score in 
each course, and all students would be randomly assigned to courses. This would produce an 
MPTP standard score of 0.00, the mean of all the standardized criterion scores for the assignment 
pool. Thus, any MPTP significantly greater than 0.00 would indicate the presence of an ATI. 

The level of MPTP obtained is a measure of the practical effects of ATIs on training 
performance. As mentioned in the Introduction, assignment simulation results from personnel 
testing have been linked to human resource budgets using a variety of approaches (Harris, 
McCloy, DiFazio & Hogan, 1993; Nord and Schmitz, 1991; Nord and White, 1988; Schmidt, 
Hunter, & Dunn, 1987). Similar approaches could be used to estimate the budgetary savings 
achieved by optimally assigning Air Force recruits to different training settings. 

As a supplement to MPTP scores, the interaction terms in the course-specific MLR 
equations identify the specific training factors and predictor variables that produce interactions. 
Further, the terms indicate whether the interactions are statistically significant and quantify the 
strength of those interactions. Thus, the adaptation of the personnel classification paradigm to 
ATI research produces quite a bit more information than is provided by the traditional ATI 
research design. 

Specification of the experimental conditions. We think it is valuable to compare the 
MPTP produced by different sets of predictors (and the accompanying predictor-training-variable 
interaction terms), and suggest comparing batteries made up of the following combinations of 
ASVAB factors: 
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• verbal composite alone 
• verbal and quantitative composites (i.e., AFQT) 
• verbal, quantitative, and technical composites 
• verbal, quantitative, technical and speed composites 

These four batteries should be compared to two baseline conditions: actual and random 
assignment. This comparative analysis will provide information about the relative differences in 
the practical benefits of different combinations of ATIs for training performance. If the results 
are positive, they could be used to develop technical training courses (including lecture, CBT, 
distance learning, and adaptive tutors) that capitalize on the specific learner-training-variable 
interactions identified by the classification-ATI research paradigm.   If data bases of new 
predictor batteries that appear to be relevant to ATI research become available to the Air Force, 
then we would suggest creating a set of conditions that make comparisons among complete 
batteries (e.g., ASVAB vs. AIM vs. APT). 

The classification cross-validation procedure. Johnson and Zeidner (1991) strongly 
recommend using a classification cross-validation procedure to control for overfitting the 
prediction equations, which causes inflation of the predicted performance measure (i.e., MPTP). 
Since the classification research method (more specifically, the assignment simulation) uses 
prediction equations differently from traditional regression analysis procedures (like those used 
in typical ATI and test validation research), three independent samples from the same population 
are needed. (If MLR is employed then only two samples are needed, but they are not used in the 
same way as in traditional cross-validation research [see below]). 

The first sample is used to form the treatment-specific prediction equations for the 
assignment simulation. The second sample (which does not need to have scores on performance 
measures) is the student-course matching pool that is run through the person-treatment matching 
simulation. The second sample should be fairly large and divided into 20 or 30 batches. This 
strategy provides a distribution of MPTP scores. The scores can be entered into an analysis of 
variance procedure that compares the various conditions under investigation. 

The third sample should be the same size as the first. It is used to compute an 
independent set of test weights for the treatment-specific prediction equations. These prediction 
equations are used to reestimate MPTP after the assignment is conducted. Reestimation of 
MPTP is an additional control for overfitting of the original set of prediction equations. When 
several different batteries are compared, a single set of prediction equations that includes all of 
the tests in the study should be used so that MPTP scores are equivalent across conditions. 

We suggest using MLR in the proposed research design, because it circumvents the 
weakness of small within-treatment samples. Thus, it alleviates the need for the third sample. In 
traditional testing research MLR employs the full sample of test data to compute predictor 
weights. In the classification-ATI procedure, MLR can be used with two-thirds of the sample to 
compute the weights for both the assignment equations and for computation of MPTP after 
assignment, based on all predictors in the study. The hold-out sample of one-third of the 
observations will be used to provide subjects for the student-course matching pool. 
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Use of synthetic samples for cross-validation. Because classification cross-validation 
procedures need large sample sizes, Johnson, Zeidner and others (e.g., Johnson & Zeidner 1991 ■ 
Nord and Schmitz, 1991; Statman, 1993; Statman et al., 1994) have employed a Monte Carlo    ' 
technique to produce additional samples of synthetic data. Their general approach is to map the 
vanance-covariance structure of the population of interest onto a random normal distribution 
This procedure is used extensively by statisticians for many different types of simulations 
However, in the classification context in which we are attempting to simulate operational 
organizational conditions, it tends to produce inflated results. This is because the actual military 
applicant and recruit populations vary from a strictly normal distribution and because it is 
impossible to synthesize all of the random characteristics of real data. The Johnson-Zeidner 
classification design requires one empirical sample, which is used to compute the differential 
equations for assignment, and two synthetic samples, one for the assignment pool and one to 
evaluate MPTP after assignment. 

However, we suggest a different approach. Balancing our concerns about the limitations 
of synthetic data with those of overfitting prediction equations due to small samples we 
recommend using MLR to eliminate or reduce the need for synthetic samples. If the overall 
sample is large, two-thirds of the subjects can be used to compute the prediction equations for 
assignment. The one-third hold out sample then will be used as the matching pool. If the overall 
sample is small, then the full data base can be used to create the training-specific prediction 
equations and to compute MPTP. Only one synthetic sample will be needed—for the person- 
treatment matching pool. 

Conclusion 

We have described a classification-ATI research method that is designed to improve the 
detection and measurement of ATIs, and to provide an estimate of their practical effects on 
training performance. With further development, this method can be extended to include 
estimates of the savings in training dollars due to optimal matching of students to training 
settings (e.g., classroom lectures, CBT, distance learning, and adaptive tutors). 

The classification-ATI method is composed of four major procedures: 

• selection of the set of learner variables hypothesized to interact with training 
settings 

• measurement of specific training variables with the TCS developed in this 
project 

• computation of course-specific prediction equations that quantify and 
statistically test ATIs using MLR analysis 

• simulation of a student-course matching process that capitalizes on ATIs, if 
they are present 
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We believe that the classification-ATI method developed in this project will improve ATI 
research by providing a means of simultaneously analyzing multiple ATIs in a single setting. 
This should shed some light on the conflicting findings in the traditional ATI literature. Further, 
the improved identification and measurement of the practical effects of ATIs will be useful in 
both training design and evaluation research. Finally, we mentioned above that the 
classification-ATI paradigm can be expanded to include cost-benefit analysis of the savings 
captured by optimal student-course matching (or of the gains due to higher technical 
performance) through use of ATIs in training development. 
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APPENDIX 

Training Characteristics Survey 



Training Characteristics Survey 
January 1997 

This survey has been developed under contract (F41624-95-C-5027) with the Air Force Armstrong 
Laboratory by the Human Resources Research Organization. The survey is being used to collect 
information about Air Force technical training. We are distributing it to course managers, instructors, 
curriculum chiefs, and training developers. This information is needed for research on the assignment of 
recruits to entry-level technical training courses. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

Privacy Act Statement 

AUTHORITY: 10 USC 8012, Secretary of the Air Force; powers and duties; delegation by; implemented 
by AFI 36-2623. Occupational Analysis. 

PURPOSE: To collect, summarize, and provide occupational data to Air Force management and 
training personnel. 

ROUTINE USES: Information may be disclosed for any of the blanket routine uses published by the Air 
Force. 

DISCLOSURE IS MANDATORY: Failure to complete this inventory will detract from the Air Force's 
ability to carry out the programs outlined above and is punishable under provisions of the Uniform Code 
of Military Justice (UCMJ). Individual responses will be treated confidentially and will not be disclosed 
to military or civilian supervisors, managers, or personnel officials. 

What's in This Survey? 

The Training Characteristics Survey has five parts. 

Part 1 requests brief information about you - this information will only be used to group responses. Parts 
2 through 5 ask for information about a particular training course. 

Part 2 asks you to identify the Air Force Specialties associated with the training course. 

Part 3 asks you to describe the methods of instruction used in the training course. 

Part 4 asks questions about the difficulty of the training course. 

Part 5 asks you to describe the content of the training course, specifically what kinds of activities must 
students do and what skills and abilities are needed. 



General Instructions: 

The purpose of this survey is to collect descriptive information about a sample of Air Force training 
courses. Specifically, we are interested in the characteristics of the training environment that differentiate 
courses from each other. 

Some of the survey questions ask for subjective responses. We want your best estimates based on your 
experience in military training. There are no right or wrong answers. We are interested in your 
perceptions of the characteristics of the technical training environment. 

Throughout this inventory we are concerned only with the course identified as: 

[COURSE NUMBER AND TITLE] 

Do not consider other courses when answering. 

What You Should Do With The Completed Inventory: 

After you finish the survey, place it in the pre-addressed envelope provided and put it in the mail to your 
base enlisted specialty training monitor. If you misplace the envelope, please return the survey to the 
following address: 

[INSERT BASE ENLISTED SPECIALTY TRAINING MONITOR ADDRESS HERE] 

Please return your survey within ten (10) days from the date you receive it. 

Survey Monitor: 

If you have any questions or comments about this survey, please call survey monitor name and phone 
number. Thank you very much for your participation. 



Parti: Background Information 

1.    What best describes your position? 
(Mark one) 

2.    How many years of experience do you 
have in training development, research, 
or instruction? 

. course manager 

. instructor or trainer 

. curriculum chief 

. training developer 

. other (describe) 

. years months 

Part 2: Occupational Area 

In this part of the survey, you will find questions about the occupational area associated with the training 
course. Only consider the course named above when answering questions. 

Mark the Air Force Specialty Code(s) 
for which this course provides training: 

,xxxxx 
.xxxxx 
.xxxxx 
.xxxxx 
. others (list) 

Part 3: Method of Instruction 

In this part of the survey, you will find questions about the methods of instruction, media, and materials 
used in the course. Only consider the course named above when answering questions. 

4.    What percentage of course time is 
devoted to the media used in this 
course? 
{Percentages should sum to 100) 

Example: 
85%     face-to-face instruction 
15%    computer-based instruction (CBI) 

100%   TOTAL 

. face-to-face instruction 

. computer-based instruction (CBI) 

. interactive videodisc (IVD) 

. simulator 

. distance learning technology 

. other (describe)  

TOTAL 



5.    What percentage of course time is 
devoted to the methods of instruction 
used in this course? 
(Percentages should sum to 100) 

Example: 
70%    lecture 
0%    discussion 

30%    instructional game 

100%    TOTAL 

. lecture 

. discussion 

. demonstration 

. hands-on performance 

. simulation 

. tutorial 
_ drill and practice 
. instructional game 
. modeling 
. problem solving 
. other (describe) 

TOTAL 

6.    How many hours of instruction are 
included in this course? hours 

7.    How many blocks of instruction are 
in this course? blocks 

8.    What is the student/teacher ratio (i.e., 
average student flow per instructor 
for classroom course)? student/teacher ratio 

9.    How many quizzes, tests, hands-on 
performance exercises, and other graded 
activities are included in this course? . number of tests, quizzes, etc. 

10.  How much verbal or written feedback, 
apart from tests and graded activities, 
do students typically receive during 
the course? 
(Mark only one) 

. 1-No feedback (until end of course) 

. 2-Very little feedback 

. 3-Some feedback 

. 4-A lot of feedback 

. 5-Very extensive feedback 

11. Describe the learning environment. 
Students work mostly: 
(Mark only one) 

. individually 

. in small groups (2 to 3) 

. in moderate groups (4 to 9) 
_ in large groups (10 or more) 
. in some combination of the above 
(describe)  

12. Who usually controls the pace of the 
instruction (i.e., how quickly is material 
presented/learned)? 
(Mark only one) 

, instructor 

students 

13. Who usually controls the sequence of 
instruction (i.e., the order of lessons 

instructor 



or units)? 
{Mark only one) 

students 

14.  How much flexibility or variability is 
permitted in the pace of the instruction? 
(Mark only one) 

.1-No variability 

. 2-Slight variability 

. 3-Moderate variability 

. 4-High variability 

. 5-Very high variability 

15.  How much flexibility or variability is 
permitted in the sequence of the 
instruction? 
(Mark only one) 

.1-No variability 

. 2-Slight variability 

. 3-Moderate variability 

. 4-High variability 

. 5-Very high variability 

16.  How structured is this course? 
(Structure is a function of the level of 
control assigned to the instructor [i.e., 
person or computer] as opposed to 
the student.) 
(Mark only one) 

, 1-Completely structured 
_ 2-Somewhat structured, 

somewhat unstructured 
_ 3-Completely unstructured 

Part 4: Course Difficulty 

In this part of the inventory, you will find questions related to the difficulty of the course. Course difficulty is 
a subjective concept. Please give your best estimates based on your experience with military technical 
training. There are no right or wrong answers. Only consider the course named above when answering 
questions. 

17. What is the average reading grade 
level of the course materials (e.g., 
lectures, books, study guides, 
workbooks, handouts, self-study 
materials, computerized text)? Reading grade level 

18. What percentage of students require 
special individualized assistance 
from the instructor(s)? 
(Give your best estimate) percent 



19. What percentage of students repeat 
one or more blocks of this course after 
failing quizzes or tests or due to poor 
academic performance? 
(Give your best estimate) 

20. What percentage of students fail this 
course based on academic 
performance? 
(Give your best estimate) 

, percent 

, percent 

21.  How much does this course emphasize 
learning abstract concepts and 
principles? 
(Mark only one) 

.1-No emphasis 

. 2-Slight emphasis 

. 3-Moderate emphasis 

. 4-High emphasis 

. 5-Very high emphasis 

22.  How quickly is the instruction paced 
(for example, in a very highly fast-paced 
course, students learn a very large number 
of facts, concepts, or procedures in a 
very short amount of time)? 
(Mark only one) 

. 1-Not fast-paced 

. 2-Slightly fast-paced 

. 3-Moderately fast-paced 

. 4-Highly fast-paced 

. 5-Very highly fast-paced 

23.  How difficult or challenging is this 
course? (Difficulty is a function of 
the amount, complexity, or novelty 
of information, and the pace of 
instruction.) 
(Mark only one) 

.1-Extremely easy 

. 2-Somewhat easy 

. 3-Neither easy nor difficult 

. 4-Somewhat difficult 

. 5-Extremely difficult 

24.  If you rated this course as somewhat or extremely difficult in question 23, please describe what 
makes this course difficult. 



Part 5: Course Content 

In this part of the inventory, you will find a list of characteristics that may describe activities required of the 
students (e.g., discussion, hands-on practice) or abilities and skills needed to learn the course material 
(e.g., speaking ability, problem solving). We would like you to tell us how important each characteristic is 
to this training course. Only consider the course named above when answering questions. 

Use the following scale to describe the importance of each item: 

NA = Not applicable (item is not related to the training course) 
1 = Not important (item is associated with the course, but is not important) 
2 = Somewhat important 
3 = Important (item is an important characteristic/requirement of the course) 
4 = Very important 
5 = Extremely important (item is a critical characteristic of the course) 

Circle only one response for each student activity or skill/ability. 

Student Activities 

25. Discussion between students 
and instructor 

26. Discussion among students 

27. Learning concepts and 
principles 

28. Learning facts 

29. Learning step-by-step 
procedures 

30. Hands-on performance 

31. Drill and practice 

32. Self study (out of class 
activities, not assigned reading) 

33. Outside reading assignments 

Skills and Abilities 

34. Speaking 

35. Listening 

36. Writing 

37. Reading 

38. Mathematical ability 

Not Not        Somewhat Very Extremely 
Applicable    Important     Important     Important     Important     Important 

NA 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 

Not 
Applicable 

Not 
Important 

Somewhat 
Important Important 

Very 
Important 

Extremely 
Important 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 

NA 1 2 3 4 5 



Not Not Somewhat Very 
Applicable    Important     Important     Important     Important 

39. Creativity or originality 

40. Spatial abilities 

41. Problem solving 

42. Troubleshooting 

43. Memorization of words, 
numbers, procedures 

44. Quickness/speed of 
performance 

45. Accuracy or precision 
of performance 

46. Knowledge of mechanical 
concepts 

47. Mechanical ability 

48. Electronics knowledge 

49. Knowledge of cars 
(parts and how they work) 

50. Knowledge of shop 
equipment and procedures 

51. Hand-eye coordination 

52. Interpersonal interaction 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Extremely 
Important 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

Thank you for completing this survey. 


